Patents by Inventor Ting-Hua Hsieh

Ting-Hua Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11894443
    Abstract: A method of making a semiconductor device includes depositing a TiN layer over a substrate. The method further includes doping a first portion of the TiN layer using an oxygen-containing plasma treatment. The method further includes doping a second portion of the TiN layer using a nitrogen-containing plasma treatment, wherein the second portion of the TiN layer directly contacts the first portion of the TiN layer. The method further includes forming a first metal gate electrode over the first portion of the TiN layer. The method further includes forming a second metal gate electrode over the second portion of the TiN layer, wherein the first metal gate electrode has a different work function from the second metal gate electrode, and the second metal gate electrode directly contacts the first metal gate electrode.
    Type: Grant
    Filed: June 16, 2022
    Date of Patent: February 6, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming Zhu, Hui-Wen Lin, Harry Hak-Lay Chuang, Bao-Ru Young, Yuan-Sheng Huang, Ryan Chia-Jen Chen, Chao-Cheng Chen, Kuo-Cheng Ching, Ting-Hua Hsieh, Carlos H. Diaz
  • Publication number: 20220320314
    Abstract: A method of making a semiconductor device includes depositing a TiN layer over a substrate. The method further includes doping a first portion of the TiN layer using an oxygen-containing plasma treatment. The method further includes doping a second portion of the TiN layer using a nitrogen-containing plasma treatment, wherein the second portion of the TiN layer directly contacts the first portion of the TiN layer. The method further includes forming a first metal gate electrode over the first portion of the TiN layer. The method further includes forming a second metal gate electrode over the second portion of the TiN layer, wherein the first metal gate electrode has a different work function from the second metal gate electrode, and the second metal gate electrode directly contacts the first metal gate electrode.
    Type: Application
    Filed: June 16, 2022
    Publication date: October 6, 2022
    Inventors: Ming ZHU, Hui-Wen LIN, Harry Hak-Lay CHUANG, Bao-Ru YOUNG, Yuan-Sheng HUANG, Ryan Chia-Jen CHEN, Chao-Cheng CHEN, Kuo-Cheng CHING, Ting-Hua HSIEH, Carlos H. DIAZ
  • Patent number: 11380775
    Abstract: A complementary metal-oxide-semiconductor (CMOS) semiconductor device includes a substrate. The CMOS semiconductor device further includes an isolation region in the substrate. The CMOS semiconductor device further includes a P-metal gate electrode extending over the isolation region, wherein the P-metal gate electrode includes a first function metal and a TiN layer doped with a first material. The CMOS semiconductor device further includes an N-metal gate electrode extending over the isolation region, wherein the N-metal gate electrode includes a second function metal and a TiN layer doped with a second material different from the first material, a portion of the P-metal gate electrode is between a portion of the N-metal gate electrode and the substrate, and a portion of the TiN layer doped with the second material is between the portion of the P-metal gate electrode and the substrate.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: July 5, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming Zhu, Hui-Wen Lin, Harry Hak-Lay Chuang, Bao-Ru Young, Yuan-Sheng Huang, Ryan Chia-Jen Chen, Chao-Cheng Chen, Kuo-Cheng Ching, Ting-Hua Hsieh, Carlos H. Diaz
  • Patent number: 10879135
    Abstract: A method for inline inspection during semiconductor wafer fabrication is provided. The method includes forming a plurality of test structures on a semiconductor wafer along two opposite directions. An offset distance between a sample feature and a target feature of each of the test structures increases gradually along the two opposite directions. The method further includes producing an image of the test structures. The method also includes performing image analysis of the image to recognize a position with an extreme of a gray level. In addition, the method includes calculating an overlay error according to the recognized position.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Shang-Wei Fang, Jing-Sen Wang, Yuan-Yao Chang, Wei-Ray Lin, Ting-Hua Hsieh, Pei-Hsuan Lee, Yu-Hsuan Huang
  • Publication number: 20200168721
    Abstract: A complementary metal-oxide-semiconductor (CMOS) semiconductor device includes a substrate. The CMOS semiconductor device further includes an isolation region in the substrate. The CMOS semiconductor device further includes a P-metal gate electrode extending over the isolation region, wherein the P-metal gate electrode includes a first function metal and a TiN layer doped with a first material. The CMOS semiconductor device further includes an N-metal gate electrode extending over the isolation region, wherein the N-metal gate electrode includes a second function metal and a TiN layer doped with a second material different from the first material, a portion of the P-metal gate electrode is between a portion of the N-metal gate electrode and the substrate, and a portion of the TiN layer doped with the second material is between the portion of the P-metal gate electrode and the substrate.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 28, 2020
    Inventors: Ming ZHU, Hui-Wen LIN, Harry Hak-Lay CHUANG, Bao-Ru YOUNG, Yuan-Sheng HUANG, Ryan Chia-Jen CHEN, Chao-Cheng CHEN, Kuo-Cheng CHING, Ting-Hua HSIEH, Carlos H. DIAZ
  • Publication number: 20200118893
    Abstract: A method for inline inspection during semiconductor wafer fabrication is provided. The method includes forming a plurality of test structures on a semiconductor wafer along two opposite directions. An offset distance between a sample feature and a target feature of each of the test structures increases gradually along the two opposite directions. The method further includes producing an image of the test structures. The method also includes performing image analysis of the image to recognize a position with an extreme of a gray level. In addition, the method includes calculating an overlay error according to the recognized position.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Inventors: Shang-Wei FANG, Jing-Sen WANG, Yuan-Yao CHANG, Wei-Ray LIN, Ting-Hua HSIEH, Pei-Hsuan LEE, Yu-Hsuan HUANG
  • Patent number: 10553699
    Abstract: A CMOS semiconductor device includes a substrate comprising an isolation region separating a P-active region and an N-active region. The CMOS semiconductor device further includes a P-metal gate electrode over the P-active region and extending over the isolation region, wherein the P-metal gate electrode includes a P-work function metal and a doped TiN layer between the P-work function metal and substrate. The CMOS semiconductor device further includes an N-metal gate electrode over the N-active region and extending over the isolation region, wherein the N-metal gate electrode includes an N-work function metal and a nitrogen-rich TiN layer between the N-work function metal and substrate, wherein a portion of the P-metal gate electrode is between a portion of the N-metal gate electrode and the substrate.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: February 4, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming Zhu, Hui-Wen Lin, Harry Hak-Lay Chuang, Bao-Ru Young, Yuan-Sheng Huang, Ryan Chia-jen Chen, Chao-Cheng Chen, Kuo-Cheng Ching, Ting-Hua Hsieh, Carlos H. Diaz
  • Patent number: 10510623
    Abstract: A method for inline inspection during semiconductor wafer fabrication is provided. The method includes forming a plurality of test structures on a semiconductor wafer along two opposite directions. An offset distance between a sample feature and a target feature of each of the test structures increases gradually along the two opposite directions. The method further includes producing an image of the test structures. The method also includes performing image analysis of the image to recognize a position with an extreme of a gray level. In addition, the method includes calculating an overlay error according to the recognized position.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: December 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shang-Wei Fang, Jing-Sen Wang, Yuan-Yao Chang, Wei-Ray Lin, Ting-Hua Hsieh, Pei-Hsuan Lee, Yu-Hsuan Huang
  • Publication number: 20190198403
    Abstract: A method for inline inspection during semiconductor wafer fabrication is provided. The method includes forming a plurality of test structures on a semiconductor wafer along two opposite directions. An offset distance between a sample feature and a target feature of each of the test structures increases gradually along the two opposite directions. The method further includes producing an image of the test structures. The method also includes performing image analysis of the image to recognize a position with an extreme of a gray level. In addition, the method includes calculating an overlay error according to the recognized position.
    Type: Application
    Filed: December 27, 2017
    Publication date: June 27, 2019
    Inventors: Shang-Wei FANG, Jing-Sen WANG, Yuan-Yao CHANG, Wei-Ray LIN, Ting-Hua HSIEH, Pei-Hsuan LEE, Yu-Hsuan HUANG
  • Publication number: 20180277654
    Abstract: A CMOS semiconductor device includes a substrate comprising an isolation region separating a P-active region and an N-active region. The CMOS semiconductor device further includes a P-metal gate electrode over the P-active region and extending over the isolation region, wherein the P-metal gate electrode includes a P-work function metal and a doped TiN layer between the P-work function metal and substrate. The CMOS semiconductor device further includes an N-metal gate electrode over the N-active region and extending over the isolation region, wherein the N-metal gate electrode includes an N-work function metal and a nitrogen-rich TiN layer between the N-work function metal and substrate, wherein a portion of the P-metal gate electrode is between a portion of the N-metal gate electrode and the substrate.
    Type: Application
    Filed: May 21, 2018
    Publication date: September 27, 2018
    Inventors: Ming ZHU, Hui-Wen LIN, Harry Hak-Lay CHUANG, Bao-Ru YOUNG, Yuan-Sheng HUANG, Ryan Chia-Jen CHEN, Chao-Cheng CHEN, Kuo-Cheng CHING, Ting-Hua HSIEH, Carlos H. DIAZ
  • Patent number: 9978853
    Abstract: A method of fabricating a semiconductor device includes forming a gate strip including a dummy electrode and a TiN layer. The method includes removing a first portion of the dummy electrode to form a first opening over a P-active region and an isolation region. The method includes performing an oxygen-containing plasma treatment on a first portion of the TiN layer; and filling the first opening with a first metal material. The method includes removing a second portion of the dummy electrode to form a second opening over an N-active region and the isolation region. The method includes performing a nitrogen-containing plasma treatment on a second portion of the TiN layer; and filling the second opening with a second metal material. The second portion of the TiN layer connects to the first portion of the TiN layer over the isolation region.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: May 22, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming Zhu, Hui-Wen Lin, Harry Hak-Lay Chuang, Bao-Ru Young, Yuan-Sheng Huang, Ryan Chia-Jen Chen, Chao-Cheng Chen, Kuo-Cheng Ching, Ting-Hua Hsieh, Carlos H. Diaz
  • Publication number: 20170186853
    Abstract: A method of fabricating a semiconductor device includes forming a gate strip including a dummy electrode and a TiN layer. The method includes removing a first portion of the dummy electrode to form a first opening over a P-active region and an isolation region. The method includes performing an oxygen-containing plasma treatment on a first portion of the TiN layer; and filling the first opening with a first metal material. The method includes removing a second portion of the dummy electrode to form a second opening over an N-active region and the isolation region. The method includes performing a nitrogen-containing plasma treatment on a second portion of the TiN layer; and filling the second opening with a second metal material. The second portion of the TiN layer connects to the first portion of the TiN layer over the isolation region.
    Type: Application
    Filed: March 13, 2017
    Publication date: June 29, 2017
    Inventors: Ming ZHU, Hui-Wen LIN, Harry Hak-Lay CHUANG, Bao-Ru YOUNG, Yuan-Sheng HUANG, Ryan Chia-Jen CHEN, Chao-Cheng CHEN, Kuo-Cheng CHING, Ting-Hua HSIEH, Carlos H. DIAZ
  • Patent number: 9595443
    Abstract: The invention relates to integrated circuit fabrication, and more particularly to a metal gate structure. An exemplary structure for a CMOS semiconductor device comprises a substrate comprising an isolation region surrounding and separating a P-active region and an N-active region; a P-metal gate electrode over the P-active region and extending over the isolation region, wherein the P-metal gate electrode comprises a P-work function metal and an oxygen-containing TiN layer between the P-work function metal and substrate; and an N-metal gate electrode over the N-active region and extending over the isolation region, wherein the N-metal gate electrode comprises an N-work function metal and a nitrogen-rich TiN layer between the N-work function metal and substrate, wherein the nitrogen-rich TiN layer connects to the oxygen-containing TiN layer over the isolation region.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: March 14, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming Zhu, Hui-Wen Lin, Harry-Hak-Lay Chuang, Bao-Ru Young, Yuan-Sheng Huang, Ryan Chia-Jen Chen, Chao-Cheng Chen, Kuo-Cheng Ching, Ting-Hua Hsieh, Carlos H. Diaz
  • Patent number: 6582995
    Abstract: Within a method for fabricating a microelectronic fabrication comprising a topographic microelectronic structure formed over a substrate, there is implanted, while employing a first ion implant method and while masking a portion of the substrate adjacent the topographic microelectronic structure but not masking the topographic microelectronic structure, the topographic microelectronic structure to form an ion implanted topographic microelectronic structure without implanting the substrate. There is also implanted, while employing a second ion implant method, the portion of the substrate adjacent the topographic microelectronic substrate to form therein an ion implant structure. The method is particularly useful for fabricating source/drain regions with shallow junctions within field effect transistor (FET) devices.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: June 24, 2003
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ting-Hua Hsieh, Hung-Der Su, Carlos H. Diaz
  • Publication number: 20030013282
    Abstract: Within a method for fabricating a microelectronic fabrication comprising a topographic microelectronic structure formed over a substrate, there is implanted, while employing a first ion implant method and while masking a portion of the substrate adjacent the topographic microelectronic structure but not masking the topographic microelectronic structure, the topographic microelectronic structure to form an ion implanted topographic microelectronic structure without implanting the substrate. There is also implanted, while employing a second ion implant method, the portion of the substrate adjacent the topographic microelectronic substrate to form therein an ion implant structure. The method is particularly useful for fabricating source/drain regions with shallow junctions within field effect transistor (FET) devices.
    Type: Application
    Filed: July 11, 2001
    Publication date: January 16, 2003
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ting-Hua Hsieh, Hung-Der Su, Carlos H. Diaz