Patents by Inventor Ting-Lei Gu

Ting-Lei Gu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090285796
    Abstract: In accordance with the invention, a novel activating mutation (alanine 572 to valine) in JAK3 kinase has been discovered in human acute myelogenous leukemia (AML). The mutant JAK3 kinase was confirmed to drive the proliferation and survival of acute megakaryoblastic leukemia (AML-M7). The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant JAK3 kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the mutant polypeptides. The disclosed identification of this new mutant protein and enables new methods for determining the presence of mutant JAK3 kinase polypeptides in a biological sample, methods for screening for compounds that inhibit the mutant proteins, and methods for inhibiting the progression of a cancer characterized by the mutant polynucleotides or polypeptides, which are also provided by the invention.
    Type: Application
    Filed: January 19, 2007
    Publication date: November 19, 2009
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Valerie Goss, Ting-lei Gu, Roberto Polakiewicz, Brian Druker, Denise Walters
  • Publication number: 20090263832
    Abstract: The invention discloses nearly 123 novel phosphorylation sites identified in signal transduction proteins and pathways underlying human Leukemia, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose.
    Type: Application
    Filed: November 29, 2006
    Publication date: October 22, 2009
    Inventors: Roberto Polakiewicz, Ting-Lei Gu, Valerie Goss, Kimberly Lee
  • Publication number: 20090258436
    Abstract: The invention discloses novel phosphorylation sites identified in signal transduction proteins and pathways, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose.
    Type: Application
    Filed: July 13, 2007
    Publication date: October 15, 2009
    Inventors: Peter Hornbeck, Valerie Goss, Ting-Lei Gu, Albrecht Moritz, Kimberly Lee
  • Publication number: 20090220991
    Abstract: The invention discloses nearly 480 novel phosphorylation sites identified in signal transduction proteins and pathways underlying human Leukemia, and provides phosphorylation site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 3, 2009
    Inventors: Roberto Polakiewicz, Valerie Goss, Albrecht Moritz, Ting-Lei Gu, Kimberly Lee
  • Publication number: 20090197269
    Abstract: In accordance with the invention, a novel gene translocation, (3p21, 5q33), in human myelogenous leukemia (AML) that results in a fusion protein combining part of RNA Binding Protein-6 (RBM6) with Macrophage Colony Stimulating Factor-1 Receptor (CSF1R) kinase has now been identified. The RBM6-CSF1R fusion protein and truncated CSF1R kinase itself, which both retain CSF1R tyrosine kinase activity, were confirmed to drive the proliferation and survival of acute megakaryoblastic leukemia (AML-M7). The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant CSF1R kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Application
    Filed: June 20, 2008
    Publication date: August 6, 2009
    Inventors: Ting-Lei Gu, Valerie Goss, Robert Polakiewicz, Brian Druker, Denise Walters
  • Publication number: 20090156475
    Abstract: In accordance with the invention, novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have now been identified in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ALK kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Application
    Filed: April 13, 2007
    Publication date: June 18, 2009
    Inventors: Klarisa Rikova, Herbert Haack, Laura Sullivan, Ailan Guo, Anthony Possemato, Joan MacNeill, Ting-Lei Gu, Jian Yu
  • Publication number: 20090142777
    Abstract: The invention discloses 424 novel phosphorylation sites identified in signal transduction proteins and pathways underlying human Leukemia, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: Adaptor/Scaffold proteins, Cytoskeletal proteins, Cellular Metabolism enzymes, G Protein/GTPase Activating/Guanine Nucleotide Exchange Factor proteins, Immunoglobulin Superfamily proteins, Inhibitor proteins, Lipid Kinases, Nuclear DNA Repair/RNA Binding/Transcription proteins, Serine/Threonine Protein Kinases, Tyrosine Kinases, Protein Phosphatases, and Translation/Transporter proteins.
    Type: Application
    Filed: October 5, 2007
    Publication date: June 4, 2009
    Inventors: Valerie Goss, Albrecht Moritz, Ting-Lei Gu, Kimberly Lee, Roberto Polakiewicz
  • Publication number: 20090124023
    Abstract: The invention discloses 432 novel acetylation sites identified in signal transduction proteins and pathways underlying human protein acetylation signaling pathways, and provides acetylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these acetylated sites/proteins, as well as methods of using the reagents for such purpose.
    Type: Application
    Filed: May 11, 2007
    Publication date: May 14, 2009
    Inventors: Ailan Guo, Ting-Lei Gu, Jeffrey Mitchell, Peter Hornbeck
  • Publication number: 20090098581
    Abstract: The invention discloses 482 novel phosphorylation sites identified in carcinoma and/or leukemia, peptides (including AQUA peptides) comprising a phosphorylation site of the invention, antibodies specifically bind to a novel phosphorylation site of the invention, and diagnostic and therapeutic uses of the above.
    Type: Application
    Filed: April 18, 2008
    Publication date: April 16, 2009
    Inventors: Peter Hornbeck, Ailan Guo, Ting-Lei Gu, Klarisa Rikova, Albrecht Moritz, Charles Farnsworth, Matthew Stokes, Jian Yu, Erik Spek, Yu Li, Anthony Possemato, Jessica Cherry, Valerie Goss, Jeffrey Mitchell, John Rush, Corinne Michaud
  • Publication number: 20090053831
    Abstract: The invention discloses 405 novel phosphorylation sites identified in carcinoma and/or leukemia, peptides (including AQUA peptides) comprising a phosphorylation site of the invention, antibodies specifically bind to a novel phosphorylation site of the invention, and diagnostic and therapeutic uses of the above.
    Type: Application
    Filed: April 30, 2008
    Publication date: February 26, 2009
    Inventors: Peter Hornbeck, Ailan Guo, Ting-Lei Gu, Klarisa Rikova, Albrecht Moritz, Charles Farnsworth, Matthew Stokes, Jian Yu, Erik Spek, Yu Li, Valerie Goss, Francesco Boccalatte
  • Publication number: 20080248490
    Abstract: The invention discloses nearly 288 novel phosphorylation sites identified in signal transduction proteins and pathways underlying human Leukemia, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: Adaptor/Scaffold proteins, Cytoskeletal proteins, Cellular Metabolism enzymes, G Protein/GTPase Activating/Guanine Nucleotide Exchange Factor proteins, Immunoglobulin Superfamily proteins, Inhibitor proteins, Lipid Kinases, Nuclear DNA Repair/RNA Binding/Transcription proteins, Serine/Threonine Protein Kinases, Tyrosine Kinases, Protein Phosphatases, and Translation/Transporter proteins.
    Type: Application
    Filed: February 29, 2008
    Publication date: October 9, 2008
    Inventors: Roberto Polakiewicz, Valerie Goss, Albrecht Moritz, Ting-Lei Gu, Kimberly Lee
  • Publication number: 20080014598
    Abstract: The invention discloses ten newly discovered PI3K regulatory subunit phosphorylation sites, tyrosines 467, 452, 463, and 470 in PI3KR1 (PI3Kp85 alpha), tyrosines 464, 460, and 467 in PI3KR2 (PI3Kp85 beta), and tyrosines 199, 184, and 202 in PI3KR3 (PI3Kp55 gamma), and provides reagents, including polyclonal and monoclonal antibodies, that selectively bind to PI3K when phosphorylated at one of the disclosed sites. Also provided are assays utilizing this reagent, including methods for determining the phosphorylation of PI3K in a biological sample, selecting a patient suitable for PI3K inhibitor therapy, profiling PI3K activation in a test tissue, and identifying a compound that modulates phosphorylation of PI3K in a test tissue, by using a detectable reagent, such as the disclosed antibody, that binds to PI3K only when phosphorylated at a disclosed site. The sample or test tissue may be taken from a subject suspected of having cancer, such as lymphoma, glioma, and colon cancer, involving altered PI3K signaling.
    Type: Application
    Filed: May 4, 2007
    Publication date: January 17, 2008
    Inventors: Thorsten Wiederhold, Valerie Goss, Albrecht Moritz, Klarisa Rikova, Ting-Lei Gu, Peter Hornbeck