Patents by Inventor Ting S. Luk

Ting S. Luk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11788893
    Abstract: A nanoscale bolometer for infrared (IR) thermal imaging comprises a subwavelength antenna that provides a specific detectivity approaching a fundamental, thermodynamic limit. The uncooled nanobolometer achieves performance comparable to cooled, high-performance, semiconductor photodetectors, but with significantly reduced size, weight, power, and cost.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: October 17, 2023
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Charles Thomas Harris, Tzu-Ming Lu, Ting S. Luk, Peter Anand Sharma
  • Patent number: 10908438
    Abstract: An electroabsorption modulator that operates based on electroabsorption of a surface plasmon polariton mode is improved by various structural changes and/or selection of different materials. For example, at least a portion of the waveguide may be made to be conductive, e.g., by doping. Also, layers that make up the modulator structure may be placed along sides of waveguides in addition to or instead of simply on the top thereof. High permittivity gate dielectric materials may be employed. Also, materials other than ITO may be employed as a transparent conductor. Such an improved plasmonic electroabsorption modulator can be fabricated using standard semiconductor processing techniques and may be integrated with standard photonic integrated circuits, including silicon photonics and compound semiconductor-based platforms. Advantageously, high-speed, low-voltage operation over a wide spectrum of wavelengths may be achieved.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: February 2, 2021
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Michael Wood, Salvatore Campione, Gordon Arthur Keeler, Kent M. Geib, Joshua Shank, Jon Ihlefeld, Darwin K. Serkland, Ting S. Luk
  • Patent number: 10908440
    Abstract: A method of optical modulation in a non-resonant epsilon-near-zero (EMZ) plasmonic electro-optical modulator is provided. An optical carrier is injected into a waveguide optically coupled to a layer of transparent conductive material having an epsilon-near-zero (ENZ) wavelength. The transparent conductive material layer constitutes a portion of a capacitive structure that includes a gate dielectric layer. A time-varying bias voltage applied across the gate dielectric layer shifts the ENZ wavelength toward the carrier wavelength, and thereby impresses a phase modulation pattern on the carrier wave.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: February 2, 2021
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Michael Wood, Salvatore Campione, Gordon Arthur Keeler, Kent M. Geib, Joshua Shank, Jon Ihlefeld, Darwin K. Serkland, Ting S. Luk, Isak C. Reines
  • Publication number: 20190196229
    Abstract: Thermochromic low-emissivity films can comprise a vanadium dioxide thin film or a thin film of vanadium dioxide nanoparticles incorporated into a polymer matrix, and a layer comprising a transparent conductive oxide to modify solar heat gain, solar reflectivity and thermal resistance of windows. The thermochromic low-emissivity films transition from infrared (IR) reflective when warm, to IR transparent when cool. This dynamic reflectivity is passive by nature, and requires no electronics or power source to shift. In addition, this dynamic transition can occur at any design temperature, and when the nanoparticles are dispersed, they remain transparent in the visible spectrum during both phases.
    Type: Application
    Filed: May 16, 2018
    Publication date: June 27, 2019
    Inventors: Paul G. Clem, Michael Goldflam, Ting S. Luk, Michael B. Sinclair, Thomas Edwin Beechem, III
  • Publication number: 20180335651
    Abstract: Thermochromic low-emissivity films can comprise a vanadium dioxide thin film or a thin film of vanadium dioxide nanoparticles incorporated into a polymer matrix, and a layer comprising a transparent conductive oxide to modify solar heat gain, solar reflectivity and thermal resistance of windows. The thermochromic low-emissivity films transition from infrared (IR) reflective when warm, to IR transparent when cool. This dynamic reflectivity is passive by nature, and requires no electronics or power source to shift. In addition, this dynamic transition can occur at any design temperature, and when the nanoparticles are dispersed, they remain transparent in the visible spectrum during both phases.
    Type: Application
    Filed: May 16, 2018
    Publication date: November 22, 2018
    Inventors: Paul G. Clem, Michael Goldflam, Ting S. Luk, Michael B. Sinclair, Thomas Edwin Beechem, III
  • Patent number: 9846348
    Abstract: Efficient harmonic light generation can be achieved with ultrathin films by coupling an incident pump wave to an epsilon-near-zero (ENZ) mode of the thin film. As an example, efficient third harmonic generation from an indium tin oxide nanofilm (?/42 thick) on a glass substrate for a pump wavelength of 1.4 ?m was demonstrated. A conversion efficiency of 3.3×10?6 was achieved by exploiting the field enhancement properties of the ENZ mode with an enhancement factor of 200. This nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: December 19, 2017
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Ting S. Luk, Michael B. Sinclair, Salvatore Campione
  • Patent number: 9799798
    Abstract: A novel thermal source comprising a semiconductor hyperbolic metamaterial provides control of the emission spectrum and the angular emission pattern. These properties arise because of epsilon-near-zero conditions in the semiconductor hyperbolic metamaterial. In particular, the thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the semiconductor hyperbolic metamaterial. Furthermore, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy of hyperbolic metamaterials.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: October 24, 2017
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Ting S. Luk, Salvatore Campione, Michael B. Sinclair
  • Publication number: 20170227830
    Abstract: Efficient harmonic light generation can be achieved with ultrathin films by coupling an incident pump wave to an epsilon-near-zero (ENZ) mode of the thin film. As an example, efficient third harmonic generation from an indium tin oxide nanofilm (?/42 thick) on a glass substrate for a pump wavelength of 1.4 ?m was demonstrated. A conversion efficiency of 3.3×10?6 was achieved by exploiting the field enhancement properties of the ENZ mode with an enhancement factor of 200. This nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.
    Type: Application
    Filed: February 10, 2016
    Publication date: August 10, 2017
    Inventors: Ting S. Luk, Michael B. Sinclair, Salvatore Campione
  • Patent number: 9190542
    Abstract: The efficiency of a photovoltaic cell is enhanced by light trapping using Mie-scattering nanostructures. In one embodiment, an array of nanocylinders is formed on the front surface of a silicon film to enhance forward scattering into the film, and an array of nanocylinders is formed on the back surface to enhance backscattering so that more light is absorbed within the silicon film. In an alternate embodiment, a mirror layer is formed on the back surface of the silicon film to reflect light within the film back toward the front-surface nanocylinder array.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: November 17, 2015
    Assignee: Sandia Corporation
    Inventors: Igal Brener, Nche Tumasang Fofang, Ting S. Luk