Patents by Inventor Ting-Wei Liao

Ting-Wei Liao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955890
    Abstract: A switching converter circuit for switching one end of an inductor therein between plural voltages according to a pulse width modulation (PWM) signal to convert an input voltage to an output voltage. The switching converter circuit has a driver circuit including a high side driver, a low side driver, a high side sensor circuit, and a low side sensor circuit. The high side sensor circuit is configured to sense a gate-source voltage of a high side metal oxide semiconductor field effect transistor (MOSFET), to generate a low side enable signal for enabling the low side driver to switch a low side MOSFET according to the PWM signal. The low side sensor circuit is configured to sense a gate-source voltage of a low side MOSFET, to generate a high side enable signal for enabling the high side driver to switch a high side MOSFET according to the PWM signal.
    Type: Grant
    Filed: January 2, 2022
    Date of Patent: April 9, 2024
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Ting-Wei Liao, Chien-Yu Chen, Kun-Huang Yu, Chien-Wei Chiu, Ta-Yung Yang
  • Publication number: 20240113856
    Abstract: The present invention provides an encryption determining method. The method includes the following steps: receiving a side channel signal; generating a filtered side channel signal by filtering noise within the side channel signal; generating a phasor signal by utilizing a filter to covert the filtered side channel signal; locating the encrypted segment by calculating a periodicity of the phasor signal utilizing a standard deviation window; extracting at least one encrypted characteristic from the encrypted segment; and generating an encryption analytic result by recognizing the at least one encrypted characteristic according to a characteristic recognition model; wherein the encryption analytic result includes a position of the encrypted segment within the side channel signal, and an encryption type corresponding to the side channel signal. The present invention is able to automatically and efficiently locate the encryption segment and analyze the encryption type corresponding to the side channel signal.
    Type: Application
    Filed: October 31, 2022
    Publication date: April 4, 2024
    Applicant: INSTITUTE FOR INFORMATION INDUSTRY
    Inventors: Jian-Wei LIAO, Cheng-En LEE, Ting-Yu LIN
  • Patent number: 11876453
    Abstract: A switching converter circuit, which switches one terminal of an inductor to different voltages, includes a high side MOSFET, a low side MOSFET, and a driver circuit which includes a high side driver, a low side driver, and a dead time control circuit. According to an output current, The dead time control circuit adaptively delays a low side driving signal to generate a high side enable signal for enabling the high side driver to generate a high side driving signal according to a pulse width modulation (PWM) signal; and/or adaptively delays the high side driving signal to generate a low side enable signal for enabling the low side driver to generate the low side driving signal according to the PWM signal, so as to adaptively control a dead time in which the high side MOSFET and the low side MOSFET are both not conductive.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: January 16, 2024
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Ting-Wei Liao, Chien-Yu Chen, Kun-Huang Yu, Chien-Wei Chiu, Ta-Yung Yang
  • Patent number: 11522536
    Abstract: A switch capable of decreasing parasitic inductance includes: a semiconductor device, a first top metal line, and a second top metal line. The second top metal line electrically connects a power supply input end and a current inflow end of the semiconductor device, wherein a first part of the first top metal line is arranged in parallel and adjacent to a second part of the second top metal line. When the semiconductor device is in an ON operation, an input current outflows from the power supply input end, and is divided into a first current and a second current. When the first current and the second current flow through the first part and the second part respectively, the first current and the second current flow opposite to each other, to reduce an total parasitic inductance of the first top metal line and the second top metal line.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: December 6, 2022
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Kun-Huang Yu, Chien-Yu Chen, Ting-Wei Liao, Wu-Te Weng, Chien-Wei Chiu, Yong-Zhong Hu, Ta-Yung Yang
  • Publication number: 20220238727
    Abstract: The present invention provides a Zener diode and a manufacturing method thereof. The Zener diode includes: a semiconductor layer, an N-type region, and a P-type region. The N-type region has N-type conductivity, wherein the N-type region is formed in the semiconductor layer beneath an upper surface of the semiconductor layer, and in contact with the upper surface. The P-type region has P-type conductivity, wherein the P-type region is formed in the semiconductor layer and is completely beneath the N-type region, and in contact with the N-type region. The N-type region overlays the entire P-type region. The N-type region has an N-type conductivity dopant concentration, wherein the N-type conductivity dopant concentration is higher than a P-type conductivity dopant concentration of the P-type region.
    Type: Application
    Filed: January 7, 2022
    Publication date: July 28, 2022
    Inventors: Ting-Wei Liao, Chien-Yu Chen, Kun-Huang Yu, Wu-Te Weng, Chien-Wei Chiu, Ta-Yung Yang
  • Publication number: 20220239223
    Abstract: A switching converter circuit, which switches one terminal of an inductor to different voltages, includes a high side MOSFET, a low side MOSFET, and a driver circuit which includes a high side driver, a low side driver, and a dead time control circuit. According to an output current, The dead time control circuit adaptively delays a low side driving signal to generate a high side enable signal for enabling the high side driver to generate a high side driving signal according to a pulse width modulation (PWM) signal; and/or adaptively delays the high side driving signal to generate a low side enable signal for enabling the low side driver to generate the low side driving signal according to the PWM signal, so as to adaptively control a dead time in which the high side MOSFET and the low side MOSFET are both not conductive.
    Type: Application
    Filed: December 23, 2021
    Publication date: July 28, 2022
    Inventors: Ting-Wei Liao, Chien-Yu Chen, Kun-Huang Yu, Chien-Wei Chiu, Ta-Yung Yang
  • Publication number: 20220239224
    Abstract: A switching converter circuit for switching one end of an inductor therein between plural voltages according to a pulse width modulation (PWM) signal to convert an input voltage to an output voltage. The switching converter circuit has a driver circuit including a high side driver, a low side driver, a high side sensor circuit, and a low side sensor circuit. The high side sensor circuit is configured to sense a gate-source voltage of a high side metal oxide semiconductor field effect transistor (MOSFET), to generate a low side enable signal for enabling the low side driver to switch a low side MOSFET according to the PWM signal. The low side sensor circuit is configured to sense a gate-source voltage of a low side MOSFET, to generate a high side enable signal for enabling the high side driver to switch a high side MOSFET according to the PWM signal.
    Type: Application
    Filed: January 2, 2022
    Publication date: July 28, 2022
    Inventors: Ting-Wei Liao, Chien-Yu Chen, Kun-Huang Yu, Chien-Wei Chiu, Ta-Yung Yang
  • Publication number: 20220224325
    Abstract: A switch capable of decreasing parasitic inductance includes: a semiconductor device, a first top metal line, and a second top metal line. The second top metal line electrically connects a power supply input end and a current inflow end of the semiconductor device, wherein a first part of the first top metal line is arranged in parallel and adjacent to a second part of the second top metal line. When the semiconductor device is in an ON operation, an input current outflows from the power supply input end, and is divided into a first current and a second current. When the first current and the second current flow through the first part and the second part respectively, the first current and the second current flow opposite to each other, to reduce an total parasitic inductance of the first top metal line and the second top metal line.
    Type: Application
    Filed: January 4, 2022
    Publication date: July 14, 2022
    Inventors: Kun-Huang Yu, Chien-Yu Chen, Ting-Wei Liao, Wu-Te Weng, Chien-Wei Chiu, Yong-Zhong Hu, Ta-Yung Yang
  • Publication number: 20220223464
    Abstract: A high voltage device includes: a semiconductor layer, a well, a bulk region, a gate, a source, and a drain. The bulk region is formed in the semiconductor layer and contacts the well region along a channel direction. A portion of the bulk region is vertically below and in contact with the gate, to provide an inversion region of the high voltage device when the high voltage device is in conductive operation. A portion of the well lies between the bulk region and the drain, to separate the bulk region from the drain. A first concentration peak region of an impurities doping profile of the bulk region is vertically below and in contact with the source. A concentration of a second conductivity type impurities of the first concentration peak region is higher than that of other regions in the bulk region.
    Type: Application
    Filed: December 10, 2021
    Publication date: July 14, 2022
    Inventors: Kun-Huang Yu, Chien-Yu Chen, Ting-Wei Liao, Chih-Wen Hsiung, Chun-Lung Chang, Kuo-Chin Chiu, Wu-Te Weng, Chien-Wei Chiu, Yong-Zhong Hu, Ta-Yung Yang
  • Publication number: 20220157982
    Abstract: A high voltage device for use as an up-side switch of a power stage circuit includes: at least one lateral diffused metal oxide semiconductor (LDMOS) device, a second conductivity type isolation region and at least one Schottky barrier diode (SBD). The LDMOS device includes: a well formed in a semiconductor layer, a body region, a gate, a source and a drain. The second conductivity type isolation region is formed in the semiconductor layer and is electrically connected to the body region. The SBD includes: a Schottky metal layer formed on the semiconductor layer and a Schottky semiconductor layer formed in the semiconductor layer. The Schottky semiconductor layer and the Schottky metal layer form a Schottky contact. In the semiconductor layer, the Schottky semiconductor layer is adjacent to and in contact with the second conductivity type isolation region.
    Type: Application
    Filed: October 20, 2021
    Publication date: May 19, 2022
    Inventors: Kuo-Chin Chiu, Ta-Yung Yang, Chien-Wei Chiu, Wu-Te Weng, Chien-Yu Chen, Chih-Wen Hsiung, Chun-Lung Chang, Kun-Huang Yu, Ting-Wei Liao
  • Patent number: 10466732
    Abstract: A switching regulator includes a power stage circuit and a control circuit. The power stage circuit operates a high-side switch and a low-side switch therein according to a high-side signal and a low-side signal respectively to generate an inductor current flowing through an inductor therein. The adjustment signal generation circuit in the control circuit generates an adjustment level according to the high-side signal, the low-side signal, and/or the inductor current, wherein the adjustment level is switched between a reverse recovery level and an anti-latch-up level, and is electrically connected to a low-side isolation region of the low-side switch. The reverse recovery level is lower than the input voltage. The anti-latch-up level is higher than the reverse recovery level to avoid a latch-up effect.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: November 5, 2019
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chien-Yu Chen, Tsung-Yi Huang, Ting-Wei Liao
  • Publication number: 20190302822
    Abstract: A switching regulator includes a power stage circuit and a control circuit. The power stage circuit operates a high-side switch and a low-side switch therein according to a high-side signal and a low-side signal respectively to generate an inductor current flowing through an inductor therein. The adjustment signal generation circuit in the control circuit generates an adjustment level according to the high-side signal, the low-side signal, and/or the inductor current, wherein the adjustment level is switched between a reverse recovery level and an anti-latch-up level, and is electrically connected to a low-side isolation region of the low-side switch. The reverse recovery level is lower than the input voltage. The anti-latch-up level is higher than the reverse recovery level to avoid a latch-up effect.
    Type: Application
    Filed: February 12, 2019
    Publication date: October 3, 2019
    Inventors: Chien-Yu Chen, Tsung-Yi Huang, Ting-Wei Liao
  • Publication number: 20150130067
    Abstract: This invention provides an ohmic contact structure including: a semiconductor substrate having a top surface which includes a plurality of micro-structures; and a conductive layer, which is formed on the micro-structures. An ohmic contact is formed by the conductive layer and the semiconductor substrate. The present invention also provides a semiconductor device having the ohmic contact structure.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 14, 2015
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chien-Wei Chiu, Ting-Wei Liao, Chieh-Hsiung Kuan, Tsung-Yi Huang, Tsung-Yu Yang
  • Publication number: 20130299840
    Abstract: The present invention discloses a Schottky barrier diode (SBD) and a manufacturing method thereof. The SBD includes: a semiconductor layer, which has multiple openings forming an opening array; and an anode, which has multiple conductive protrusions protruding into the multiple openings and forming a conductive array; wherein a Schottky contact is formed between the semiconductor layer and the anode.
    Type: Application
    Filed: May 8, 2012
    Publication date: November 14, 2013
    Inventors: Chieh-Hsiung Kuan, Ting-Wei Liao, Chien-Wei Chiu, Tsung-Yi Huang
  • Patent number: 8471603
    Abstract: The present invention provides a current driver for driving a current driven device. The current driver includes a driving circuit, configured to generate a driving current to drive the current driven device, and conduct or cut off a driving current path through which the driving current flows according to a voltage level of a driving control node, and an accelerating circuit, coupled to the driving control node of the driving circuit, configured to provide an accelerating current flowing through the driving control node to accelerate a voltage level transition at the driving control node during an activation period of the driving circuit, and automatically cut off the accelerating current when a voltage level of the driving control node reaches a specific level.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: June 25, 2013
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Tsung-Hau Chang, Ting-Wei Liao
  • Patent number: 8427081
    Abstract: A driving method of a light-emitting diode (LED) adapted to a driving apparatus is provided. The driving method includes detecting whether the driving apparatus performs dimming, and if the driving apparatus performs dimming, determining whether a predetermined requirement for dimming control is met or not. When the predetermined requirement for dimming control is not met, respective current magnitudes of a plurality of driving currents are regulated, and each of the driving currents is output for a full time of a period. Conversely, when the predetermined requirement for dimming control is met, each of the driving currents is output for a partial time of a period.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: April 23, 2013
    Assignee: Novatek Microelectronics Corp.
    Inventors: Kuo-Ching Hsu, Chin-Hsun Hsu, Tsung-Hau Chang, Ting-Wei Liao
  • Patent number: 8344661
    Abstract: An LED device with simultaneous open and short detection function includes a plurality of LED strings, a voltage converter, a current driving unit, a loop control unit, an open detector, a short detector and a voltage detector. The open detector and the short detector are utilized for detecting LED open and LED short for the plurality of LED strings, respectively. The voltage detector is coupled to the open detector, the short detector and the voltage converter, and is utilized for generating a reset signal to the short detector according to an output voltage of the voltage converter when the LED open occurs on the plurality of LED strings, so as to initiate the LED short detection for the plurality of LED strings again.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: January 1, 2013
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Kuo-Ching Hsu, Chin-Hsun Hsu, Tsung-Hau Chang, Ting-Wei Liao
  • Publication number: 20120286677
    Abstract: A driving method of a light-emitting diode (LED) adapted to a driving apparatus is provided. The driving method includes detecting whether the driving apparatus performs dimming, and if the driving apparatus performs dimming, determining whether a predetermined requirement for dimming control is met or not. When the predetermined requirement for dimming control is not met, respective current magnitudes of a plurality of driving currents are regulated, and each of the driving currents is output for a full time of a period. Conversely, when the predetermined requirement for dimming control is met, each of the driving currents is output for a partial time of a period.
    Type: Application
    Filed: July 23, 2012
    Publication date: November 15, 2012
    Applicant: NOVATEK MICROELECTRONICS CORP.
    Inventors: Kuo-Ching Hsu, Chin-Hsun Hsu, Tsung-Hau Chang, Ting-Wei Liao
  • Patent number: 8288969
    Abstract: A driving method of a light-emitting diode (LED) adapted to a driving apparatus is provided. The driving method includes receiving a dimming signal, detecting whether the driving apparatus performs dimming, and if the driving apparatus performs dimming, determining whether a duty cycle of the dimming signal is smaller than a predetermined value. When the duty cycle of the dimming signal is not smaller than the predetermined value, respective current magnitudes of a plurality of driving currents are regulated according to the dimming signal, and each of the driving currents is output for a full time of a period. Conversely, when the duty cycle of the dimming signal is smaller than the predetermined value, each of the driving currents is output for a partial time of a period. A driving apparatus employing the driving method is also provided.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: October 16, 2012
    Assignee: Novatek Microelectronics Corp.
    Inventors: Kuo-Ching Hsu, Chin-Hsun Hsu, Tsung-Hau Chang, Ting-Wei Liao
  • Patent number: RE46330
    Abstract: A driving method of a light-emitting diode (LED) adapted to a driving apparatus is provided. The driving method includes detecting whether the driving apparatus performs dimming, and if the driving apparatus performs dimming, determining whether a predetermined requirement for dimming control is met or not. When the predetermined requirement for dimming control is not met, respective current magnitudes of a plurality of driving currents are regulated, and each of the driving currents is output for a full time of a period. Conversely, when the predetermined requirement for dimming control is met, each of the driving currents is output for a partial time of a period.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: February 28, 2017
    Assignee: Novatek Microelectronics Corp.
    Inventors: Kuo-Ching Hsu, Chin-Hsun Hsu, Tsung-Hau Chang, Ting-Wei Liao