Patents by Inventor Ting-Ya CHENG

Ting-Ya CHENG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240085797
    Abstract: A method of controlling an extreme ultraviolet (EUV) lithography system is disclosed. The method includes irradiating a target droplet with EUV radiation, detecting EUV radiation reflected by the target droplet, determining aberration of the detected EUV radiation, determining a Zernike polynomial corresponding to the aberration, and performing a corrective action to reduce a shift in Zernike coefficients of the Zernike polynomial.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Ya CHENG, Han-Lung CHANG, Shi-Han SHANN, Li-Jui CHEN, Yen-Shuo SU
  • Patent number: 11860544
    Abstract: A method of controlling an extreme ultraviolet (EUV) lithography system is disclosed. The method includes irradiating a target droplet with EUV radiation, detecting EUV radiation reflected by the target droplet, determining aberration of the detected EUV radiation, determining a Zernike polynomial corresponding to the aberration, and performing a corrective action to reduce a shift in Zernike coefficients of the Zernike polynomial.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: January 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ting-Ya Cheng, Han-Lung Chang, Shi-Han Shann, Li-Jui Chen, Yen-Shuo Su
  • Publication number: 20230380044
    Abstract: A method for monitoring a shock wave in an extreme ultraviolet light source includes irradiating a target droplet in the extreme ultraviolet light source apparatus of an extreme ultraviolet lithography tool with ionizing radiation to generate a plasma and to detect a shock wave generated by the plasma. One or more operating parameters of the extreme ultraviolet light source is adjusted based on the detected shock wave.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Inventors: Yen-Shuo SU, Jen-Hao YEH, Jhan-Hong YEH, Ting-Ya CHENG, Henry Yee Shian TONG, Chun-Lin CHANG, Han-Lung CHANG, Li-Jui CHEN, Po-Chung CHENG
  • Patent number: 11800626
    Abstract: A method for monitoring a shock wave in an extreme ultraviolet light source includes irradiating a target droplet in the extreme ultraviolet light source apparatus of an extreme ultraviolet lithography tool with ionizing radiation to generate a plasma and to detect a shock wave generated by the plasma. One or more operating parameters of the extreme ultraviolet light source is adjusted based on the detected shock wave.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: October 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yen-Shuo Su, Jen-Hao Yeh, Jhan-Hong Yeh, Ting-Ya Cheng, Henry Yee Shian Tong, Chun-Lin Chang, Han-Lung Chang, Li-Jui Chen, Po-Chung Cheng
  • Publication number: 20220361311
    Abstract: A method for monitoring a shock wave in an extreme ultraviolet light source includes irradiating a target droplet in the extreme ultraviolet light source apparatus of an extreme ultraviolet lithography tool with ionizing radiation to generate a plasma and to detect a shock wave generated by the plasma. One or more operating parameters of the extreme ultraviolet light source is adjusted based on the detected shock wave.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 10, 2022
    Inventors: Yen-Shuo SU, Jen-Hao YEH, Jhan-Hong YEH, Ting-Ya CHENG, Yee-Shian Henry TONG, Chun-Lin CHANG, Han-Lung CHANG, Li-Jui CHEN, Po-Chung CHENG
  • Patent number: 11452197
    Abstract: A method for monitoring a shock wave in an extreme ultraviolet light source includes irradiating a target droplet in the extreme ultraviolet light source apparatus of an extreme ultraviolet lithography tool with ionizing radiation to generate a plasma and to detect a shock wave generated by the plasma. One or more operating parameters of the extreme ultraviolet light source is adjusted based on the detected shock wave.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: September 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Shuo Su, Jen-Hao Yeh, Jhan-Hong Yeh, Ting-Ya Cheng, Yee-Shian Henry Tong, Chun-Lin Chang, Han-Lung Chang, Li-Jui Chen, Po-Chung Cheng
  • Publication number: 20220283507
    Abstract: A method of controlling an extreme ultraviolet (EUV) lithography system is disclosed. The method includes irradiating a target droplet with EUV radiation, detecting EUV radiation reflected by the target droplet, determining aberration of the detected EUV radiation, determining a Zernike polynomial corresponding to the aberration, and performing a corrective action to reduce a shift in Zernike coefficients of the Zernike polynomial.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Inventors: Ting-Ya CHENG, Han-Lung CHANG, Shi-Han SHANN, Li-Jui CHEN, Yen-Shuo SU
  • Patent number: 11340531
    Abstract: A method of controlling an extreme ultraviolet (EUV) lithography system is disclosed. The method includes irradiating a target droplet with EUV radiation, detecting EUV radiation reflected by the target droplet, determining aberration of the detected EUV radiation, determining a Zernike polynomial corresponding to the aberration, and performing a corrective action to reduce a shift in Zernike coefficients of the Zernike polynomial.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: May 24, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ting-Ya Cheng, Han-Lung Chang, Shi-Han Shann, Li-Jui Chen, Yen-Shuo Su
  • Publication number: 20220124901
    Abstract: An apparatus for generating extreme ultraviolet (EUV) radiation includes a droplet generator configured to generate target droplets. An excitation laser is configured to heat the target droplets using excitation pulses to convert the target droplets to plasma. A deformable mirror is disposed in a path of the excitation laser. A controller is configured to adjust parameters of the excitation laser by controlling the deformable mirror based on a feedback parameter.
    Type: Application
    Filed: December 27, 2021
    Publication date: April 21, 2022
    Inventors: Ting-Ya CHENG, Chun-Lin CHANG, Li-Jui CHEN, Han-Lung CHANG
  • Publication number: 20220011675
    Abstract: A method of controlling an extreme ultraviolet (EUV) lithography system is disclosed. The method includes irradiating a target droplet with EUV radiation, detecting EUV radiation reflected by the target droplet, determining aberration of the detected EUV radiation, determining a Zernike polynomial corresponding to the aberration, and performing a corrective action to reduce a shift in Zernike coefficients of the Zernike polynomial.
    Type: Application
    Filed: July 10, 2020
    Publication date: January 13, 2022
    Inventors: Ting-Ya CHENG, Han-Lung CHANG, Shi-Han SHANN, Li-Jui CHEN, Yen-Shuo SU
  • Patent number: 11212903
    Abstract: An apparatus for generating extreme ultraviolet (EUV) radiation includes a droplet generator configured to generate target droplets. An excitation laser is configured to heat the target droplets using excitation pulses to convert the target droplets to plasma. A deformable mirror is disposed in a path of the excitation laser. A controller is configured to adjust parameters of the excitation laser by controlling the deformable mirror based on a feedback parameter.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: December 28, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ting-Ya Cheng, Chun-Lin Chang, Li-Jui Chen, Han-Lung Chang
  • Publication number: 20200137864
    Abstract: A method for monitoring a shock wave in an extreme ultraviolet light source includes irradiating a target droplet in the extreme ultraviolet light source apparatus of an extreme ultraviolet lithography tool with ionizing radiation to generate a plasma and to detect a shock wave generated by the plasma. One or more operating parameters of the extreme ultraviolet light source is adjusted based on the detected shock wave.
    Type: Application
    Filed: October 16, 2019
    Publication date: April 30, 2020
    Inventors: Yen-Shuo SU, Jen-Hao YEH, Jhan-Hong YEH, Ting-Ya CHENG, Yee-Shian Henry TONG, Chun-Lin CHANG, Han-Lung CHANG, Li-Jui CHEN, Po-Chung CHENG
  • Publication number: 20200075190
    Abstract: An apparatus for generating extreme ultraviolet (EUV) radiation includes a droplet generator configured to generate target droplets. An excitation laser is configured to heat the target droplets using excitation pulses to convert the target droplets to plasma. A deformable mirror is disposed in a path of the excitation laser. A controller is configured to adjust parameters of the excitation laser by controlling the deformable mirror based on a feedback parameter.
    Type: Application
    Filed: August 26, 2019
    Publication date: March 5, 2020
    Inventors: Ting-Ya CHENG, Chun-Lin CHANG, Li-Jui CHEN, Han-Lung CHANG