Patents by Inventor Ting-Yi Wu

Ting-Yi Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12015017
    Abstract: A package structure including a first redistribution layer, a semiconductor die, through insulator vias, an insulating encapsulant and a second redistribution layer. The first redistribution layer includes a dielectric layer, a conductive layer, and connecting portions electrically connected to the conductive layer. The dielectric layer has first and second surfaces, the connecting portions has a first side, a second side, and sidewalls joining the first side to the second side. The first side of the connecting portions is exposed from and coplanar with the first surface of the dielectric layer. The semiconductor die is disposed on the second surface of the dielectric layer. The through insulator vias are connected to the conductive layer. The insulating encapsulant is disposed on the dielectric layer and encapsulating the semiconductor die and the through insulator vias. The second redistribution layer is disposed on the semiconductor die and over the insulating encapsulant.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: June 18, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hsuan Tai, Hao-Yi Tsai, Yu-Chih Huang, Chia-Hung Liu, Ting-Ting Kuo, Ban-Li Wu, Ying-Cheng Tseng, Chi-Hui Lai
  • Publication number: 20240159976
    Abstract: An alignment structure of an optical element includes an optical fiber having a parallel fiber segment and a plurality of bare fiber segments, a cover plate provided with a plurality of side-by-side guide grooves and a plurality of first coupling parts, the bare fiber segments of the optical fiber being arranged in the corresponding guide grooves, cross-sectional shapes of the guide grooves being at least one of U-shaped or V-shaped, and a silicon chip provided with lines and a plurality of second coupling parts. When the cover plate is matched with the silicon chip, the first coupling parts and the second coupling parts are coupled and positioned with each other respectively, and the optical fiber is fixed between the silicon chip and the cover plate.
    Type: Application
    Filed: January 19, 2024
    Publication date: May 16, 2024
    Inventors: Ting-Ta Hu, Hsu-Liang Hsiao, Po-Yi Wu
  • Publication number: 20240118316
    Abstract: A probe card and a manufacturing method of a probe card are provided. The probe card includes a probe head, first and second substrates, an insulating component, and an adhesive member. The second substrate is disposed between the probe head and the first substrate, and is disposed on the first substrate. The second substrate faces the first substrate and includes second contacts. The second contacts are electrically connected to first contacts of the first substrate. The insulating component is disposed between the first substrate and the second substrate, and disposed at an outer side of the second contacts. The adhesive member is disposed on the first substrate, arranged on at least a part of the side surface of the second substrate, and disposed at an outer side of the insulating component.
    Type: Application
    Filed: December 19, 2023
    Publication date: April 11, 2024
    Applicant: MPI Corporation
    Inventors: Chin-Yi Lin, Che-Wei Lin, Ting-Ju Wu, Chien-Kai Hung
  • Patent number: 11947172
    Abstract: An optical probe package structure is provided, used in a test environment for testing a plurality of optical chips on a wafer, including: a main body, an optical fiber, an optical fiber positioning area, a mode field conversion waveguide structure, and an optical waveguide. Wherein, the mode field conversion waveguide structure is used to convert the propagation field of the optical signal, and the optical signal transmitted by the mode field conversion waveguide structure enters the optical waveguide. The optical waveguide has an emitting end, and the emitting end is provided with a facet, the facet has a facet angle, and the facet angle makes the optical signal after field conversion mode field conversion to produce total reflection and output along a second direction. The optical signal after total reflection enters the optical chips. Thereby, an optical probe package structure that can test before wafer cutting and polishing is provided.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: April 2, 2024
    Assignee: FOCI FIBER OPTIC COMMUNICATIONS, INC.
    Inventors: Ting-Ta Hu, Hsu-Liang Hsiao, Po-Yi Wu
  • Publication number: 20240085645
    Abstract: An assembly alignment structure for optical component is provided, including: an optical fiber, comprising: a combined fiber segment and a plurality of bare fiber segments; a cover plate, having a first installation surface disposed with a plurality of guide grooves, an installation groove, and at least one first coupling groove, the bare fiber segments being in the corresponding in the guide grooves; a lens, arranged in the installation groove; a chip, having a signal receiving surface; a carrier plate, having a second installation surface disposed with at least one second coupling groove, the chip is fixed on the second installation surface; and at least one positioning post; when the cover plate and carrier plate are aligned, the positioning post is located in the first and second coupling grooves, and the optical fiber and the lens are fixed and aligned between the carrier plate and the cover plate.
    Type: Application
    Filed: October 28, 2022
    Publication date: March 14, 2024
    Inventors: Ting-Ta Hu, Po-Yi Wu
  • Patent number: 11921334
    Abstract: An alignment structure of optical element is provided, including: an optical fiber, having a parallel fiber segment and a plurality of bare fiber segments; a cover plate, provided with a plurality of side-by-side guide grooves and a plurality of first coupling parts, the bare fiber segments of the optical fiber being arranged in the corresponding guide grooves, cross-sectional shapes of the guide grooves being at least one of U-shaped or V-shaped; and a silicon chip, provided with lines and a plurality of second coupling parts; when the cover plate is matched with the silicon chip, the first coupling parts and the second coupling parts being coupled and positioned with each other respectively, and the optical fiber being fixed between the silicon chip and the cover plate. As such, precise positioning and rapid assembly are achieved.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: March 5, 2024
    Assignee: FOCI FIBER OPTIC COMMUNICATIONS, INC.
    Inventors: Ting-Ta Hu, Hsu-Liang Hsiao, Po-Yi Wu
  • Publication number: 20210381885
    Abstract: The disclosure provides a light-emitting element inspection device optically connected to at least one light-emitting element of a test object and including a dark box, a slide rail, an image-capturing device, a light-entrance plate, and a processor. The slide rail and the image-capturing device are disposed in the dark box. The image-capturing device slides on the slide rail. The light-entrance plate is disposed on one side of the dark box and has at least one hole optically connected to the light-emitting element. The image-capturing device is aligned with the light-entrance plate to capture an image of the light-entrance plate. The processor is coupled to the image-capturing device and is adapted to obtain a set of RGB values of the image, convert the RGB values into a set of HSV values, and determine whether the light-emitting element of the test object conforms to a standard based on the HSV values.
    Type: Application
    Filed: March 26, 2021
    Publication date: December 9, 2021
    Applicant: PEGATRON CORPORATION
    Inventors: Shao-Han Chiang, Tzu-Hsiang Kao, Tsung-Wei Tseng, Wen-Shau Peng, Jyun-Yi Wu, Hsin-Han Chen, Ting-Yi Wu, Hsiao-Jung Ou, Wei-Fu Chen, Chih-Yuan Lin, Li-Chia Wang
  • Patent number: 9513503
    Abstract: A display apparatus and a polarizer for multi-domain vertical aligned liquid crystal display apparatus are provided. The display apparatus includes a liquid crystal display device, a first polarizer, a second polarizer and a diffractive optical element. The first polarizer is disposed on the first substrate. The second polarizer is disposed between the second substrate and the backlight module. The diffractive optical element includes a first diffraction grating and is disposed on a light emitting side of the first polarizer. An azimuth angle the first diffraction grating is counted from an absorbing axis of the first polarizer as standard.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: December 6, 2016
    Assignee: CHI MEI MATERIALS TECHNOLOGY CORPORATION
    Inventors: Wang-Yang Li, Ting-Yi Wu
  • Publication number: 20130038804
    Abstract: A display apparatus and a polarizer for multi-domain vertical aligned liquid crystal display apparatus are provided. The display apparatus includes a liquid crystal display device, a first polarizer, a second polarizer and a diffractive optical element. The first polarizer is disposed on the first substrate. The second polarizer is disposed between the second substrate and the backlight module. The diffractive optical element includes a first diffraction grating and is disposed on a light emitting side of the first polarizer. An azimuth angle the first diffraction grating is counted from an absorbing axis of the first polarizer as standard.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 14, 2013
    Applicant: CHI MEI CORPORATION
    Inventors: Wang-Yang Li, Ting-Yi Wu
  • Patent number: 8107040
    Abstract: A transflective LCD panel includes scan lines, data lines, transmissive pixels and reflective pixels. Each transmissive pixel is configured to receive a transmissive pixel voltage transmitted from one of the data lines and displays a first gray level related to the transmissive pixel voltage. Each reflective pixel receives a reflective pixel voltage transmitted from one of the data lines and displays a second gray level related to the reflective pixel voltage. When the transmissive pixel and the reflective pixel are used to display a same gray level, the transmissive pixel voltage and the reflective pixel voltage are predetermined such that corresponding first and second gray levels substantially equal each other.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: January 31, 2012
    Assignee: Chimei Innolux Corporation
    Inventors: Chao-Lien Lin, Ting-Yi Wu, Yi-Chin Lee
  • Publication number: 20100157214
    Abstract: A transflective LCD panel includes scan lines, data lines, transmissive pixels and reflective pixels. Each transmissive pixel is configured to receive a transmissive pixel voltage transmitted from one of the data lines and displays a first gray level related to the transmissive pixel voltage. Each reflective pixel receives a reflective pixel voltage transmitted from one of the data lines and displays a second gray level related to the reflective pixel voltage. When the transmissive pixel and the reflective pixel are used to display a same gray level, the transmissive pixel voltage and the reflective pixel voltage are predetermined such that corresponding first and second gray levels substantially equal each other.
    Type: Application
    Filed: February 24, 2010
    Publication date: June 24, 2010
    Applicant: CHI MEI OPTOELECTRONICS CORP.
    Inventors: Chao-Lien LIN, Ting-Yi WU, Yi-Chin LEE
  • Publication number: 20080123000
    Abstract: A transflective LCD panel includes scan lines, data lines, transmissive pixels and reflective pixels. Each transmissive pixel is configured to receive a transmissive pixel voltage transmitted from one of the data lines and displays a first gray level related to the transmissive pixel voltage. Each reflective pixel receives a reflective pixel voltage transmitted from one of the data lines and displays a second gray level related to the reflective pixel voltage. When the transmissive pixel and the reflective pixel are used to display a same gray level, the transmissive pixel voltage and the reflective pixel voltage are predetermined such that corresponding first and second gray levels substantially equal each other.
    Type: Application
    Filed: November 23, 2007
    Publication date: May 29, 2008
    Applicant: CHI MEI OPTOELECTRONICS CORP.
    Inventors: Chao-Lien Lin, Ting-Yi Wu, Yi-Chin Lee