Patents by Inventor Tingkai Li

Tingkai Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070221975
    Abstract: A multi-layer PrxCa1-xMnO3 (PCMO) thin film capacitor and associated deposition method are provided for forming a bipolar switching thin film. The method comprises: forming a bottom electrode; depositing a nanocrystalline PCMO layer; depositing a polycrystalline PCMO layer; forming a multi-layer PCMO film with bipolar switching properties; and forming top electrode overlying the PCMO film. If the polycrystalline layers are deposited overlying the nanocrystalline layers, a high resistance can be written with narrow pulse width, negative voltage pulses. The PCMO film can be reset to a low resistance using a narrow pulse width, positive amplitude pulse. Likewise, if the nanocrystalline layers are deposited overlying the polycrystalline layers, a high resistance can be written with narrow pulse width, positive voltage pulses, and reset to a low resistance using a narrow pulse width, negative amplitude pulse.
    Type: Application
    Filed: May 22, 2007
    Publication date: September 27, 2007
    Inventors: Tingkai Li, Lawrence Charneski, Wei-Wei Zhuang, David Evans, Sheng Hsu
  • Patent number: 7271081
    Abstract: A method is provided for forming a metal/semiconductor/metal (MSM) current limiter and resistance memory cell with an MSM current limiter. The method includes the steps of: providing a substrate; forming an MSM bottom electrode overlying the substrate; forming a ZnOx semiconductor layer overlying the MSM bottom electrode, where x is in the range between about 1 and about 2, inclusive; and, forming an MSM top electrode overlying the semiconductor layer, The ZnOx semiconductor can be formed through a number of different processes such as spin-coating, direct current (DC) sputtering, radio frequency (RF) sputtering, metalorganic chemical vapor deposition (MOCVD), or atomic layer deposition (ALD).
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: September 18, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Sheng Teng Hsu, Wei-Wei Zhuang, David R. Evans
  • Patent number: 7259055
    Abstract: A method for forming a high-luminescence Si electroluminescence (EL) phosphor is provided, with an EL device made from the Si phosphor. The method comprises: depositing a silicon-rich oxide (SRO) film, with Si nanocrystals, having a refractive index in the range of 1.5 to 2.1, and a porosity in the range of 5 to 20%; and, post-annealing the SRO film in an oxygen atmosphere. DC-sputtering or PECVD processes can be used to deposit the SRO film. In one aspect the method further comprises: HF buffered oxide etching (BOE) the SRO film; and, re-oxidizing the SRO film, to form a SiO2 layer around the Si nanocrystals in the SRO film. In one aspect, the SRO film is re-oxidized by annealing in an oxygen atmosphere. In this manner, a layer of SiO2 is formed around the Si nanocrystals having a thickness in the range of 1 to 5 nanometers (nm).
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: August 21, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Pooran Chandra Joshi, Wei Gao, Yoshi Ono, Sheng Teng Hsu
  • Patent number: 7256429
    Abstract: A method is provided for forming a buffered-layer memory cell. The method comprises: forming a bottom electrode; forming a colossal magnetoresistance (CMR) memory film overlying the bottom electrode; forming a memory-stable semiconductor buffer layer, typically a metal oxide, overlying the memory film; and, forming a top electrode overlying the semiconductor buffer layer. In some aspects of the method the semiconductor buffer layer is formed from YBa2Cu3O7?X (YBCO), indium oxide (In2O3), or ruthenium oxide (RuO2), having a thickness in the range of 10 to 200 nanometers (nm). The top and bottom electrodes may be TiN/Ti, Pt/TiN/Ti, In/TiN/Ti, PtRhOx compounds, or PtIrOx compounds. The CMR memory film may be a Pr1?XCaXMnO3 (PCMO) memory film, where x is in the region between 0.1 and 0.6, with a thickness in the range of 10 to 200 nm.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: August 14, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Tingkai Li, Fengyan Zhang, Wei Pan, Wei-Wei Zhuang, David R. Evans, Masayuki Tajiri
  • Patent number: 7256426
    Abstract: Provided are an electroluminescence (EL) device and corresponding method for forming a rare earth element-doped silicon (Si)/Si dioxide (SiO2) lattice structure. The method comprises: providing a substrate; DC sputtering a layer of amorphous Si overlying the substrate; DC sputtering a rare earth element; in response, doping the Si layer with the rare earth element; DC sputtering a layer of SiO2 overlying the rare earth-doped Si; forming a lattice structure; annealing; and, in response to the annealing, forming nanocrystals in the rare-earth doped Si having a grain size in the range of 1 to 5 nanometers (nm). In one aspect, the rare earth element and Si are co-DC sputtered. Typically, the steps of DC sputtering Si, DC sputtering the rare earth element, and DC sputtering the SiO2 are repeated 5 to 60 cycles, so that the lattice structure includes the plurality (5-60) of alternating SiO2 and rare earth element-doped Si layers.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: August 14, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Wei Gao, Yoshi Ono, Sheng Teng Hsu
  • Patent number: 7256465
    Abstract: An ultra-shallow surface channel MOS transistor and method for fabricating the same have been provided. The method comprises: forming CMOS source and drain regions, and an intervening well region; depositing a surface channel on the surface overlying the well region; forming a high-k dielectric overlying the surface channel; and, forming a gate electrode overlying the high-k dielectric. Typically, the surface channel is a metal oxide, and may be one of the following materials: indium oxide (In2O3), ZnO, RuO, ITO, or LaX-1SrXCoO3. In some aspects, the method further comprises: depositing a placeholder material overlying the surface channel; and, etching the placeholder material to form a gate region overlying the surface channel. In one aspect, the high-k dielectric is deposited prior to the deposition of the placeholder material. Alternately, the high-k dielectric is deposited following the etching of the placeholder material.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: August 14, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Sheng Teng Hsu, Bruce D. Ulrich
  • Patent number: 7235407
    Abstract: A multi-layer PrxCa1-xMnO3 (PCMO) thin film capacitor and associated deposition method are provided for forming a bipolar switching thin film. The method comprises: forming a bottom electrode; depositing a nanocrystalline PCMO layer; depositing a polycrystalline PCMO layer; forming a multi-layer PCMO film with bipolar switching properties; and, forming top electrode overlying the PCMO film. If the polycrystalline layers are deposited overlying the nanocrystalline layers, a high resistance can be written with narrow pulse width, negative voltage pulses. The PCMO film can be reset to a low resistance using a narrow pulse width, positive amplitude pulse. Likewise, if the nanocrystalline layers are deposited overlying the polycrystalline layers, a high resistance can be written with narrow pulse width, positive voltage pulses, and reset to a low resistance using a narrow pulse width, negative amplitude pulse.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: June 26, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Lawrence J. Charneski, Wei-Wei Zhuang, David R. Evans, Sheng Teng Hsu
  • Patent number: 7226504
    Abstract: A method of forming a SiGe layer having a relatively high germanium content and a relatively low threading dislocation density includes preparing a silicon substrate; depositing a layer of SiGe to a thickness of between about 100 nm to 500 nm, wherein the germanium content of the SiGe layer is greater than 20%, by atomic ratio; implanting H+ ions into the SiGe layer at a dose of between about 1·1016 cm?2 to 5·1016 cm?2, at an energy of between about 20 keV to 45 keV; patterning the SiGe layer with photoresist; plasma etching the structure to form trenches about regions; removing the photoresist; and thermal annealing the substrate and SiGe layer, to relax the SiGe layer, in an inert atmosphere at a temperature of between about 650° C. to 950° C. for between about 30 seconds and 30 minutes.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: June 5, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jer-Shen Maa, Douglas James Tweet, Tingkai Li, Jong-Jan Lee, Sheng Teng Hsu
  • Publication number: 20070108502
    Abstract: A nanocrystal silicon (Si) quantum dot memory device and associated fabrication method have been provided. The method comprises: forming a gate (tunnel) oxide layer overlying a Si substrate active layer; forming a nanocrystal Si memory film overlying the gate oxide layer, including a polycrystalline Si (poly-Si)/Si dioxide stack; forming a control Si oxide layer overlying the nanocrystal Si memory film; forming a gate electrode overlying the control oxide layer; and, forming source/drain regions in the Si active layer. In one aspect, the nanocrystal Si memory film is formed by depositing a layer of amorphous Si (a-Si) using a chemical vapor deposition (CVD) process, and thermally oxidizing a portion of the a-Si layer. Typically, the a-Si deposition and oxidation processes are repeated, forming a plurality of poly-Si/Si dioxide stacks (i.e., 2 to 5 poly-Si/Si dioxide stacks).
    Type: Application
    Filed: November 17, 2005
    Publication date: May 17, 2007
    Inventors: Tingkai Li, Sheng Hsu, Lisa Stecker
  • Patent number: 7214583
    Abstract: Asymmetrically structured memory cells and a fabrication method are provided. The method comprises: forming a bottom electrode; forming an electrical pulse various resistance (EPVR) first layer having a polycrystalline structure over the bottom electrode; forming an EPVR second layer adjacent the first layer, with a nano-crystalline or amorphous structure; and, forming a top electrode overlying the first and second EPVR layers. EPVR materials include CMR, high temperature super conductor (HTSC), or perovskite metal oxide materials. In one aspect, the EPVR first layer is deposited with a metalorganic spin coat (MOD) process at a temperature in the range between 550 and 700 degrees C. The EPVR second layer is formed at a temperature less than, or equal to the deposition temperature of the first layer. After a step of removing solvents, the MOD deposited EPVR second layer is formed at a temperature less than, or equal to the 550 degrees C.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: May 8, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Tingkai Li, David R. Evans, Wei-Wei Zhuang, Wei Pan
  • Patent number: 7193280
    Abstract: One-transistor ferroelectric memory devices using an indium oxide film (In2O3), an In2O3 film structure, and corresponding fabrication methods have been provided. The method for controlling resistivity in an In2O3 film comprises: depositing an In film using a PVD process, typically with a power in the range of 200 to 300 watts; forming a film including In overlying a substrate material; simultaneously (with the formation of the In-including film) heating the substrate material, typically the substrate is heated to a temperature in the range of 20 to 200 degrees C.; following the formation of the In-including film, post-annealing, typically in an O2 atmosphere; and, in response to the post-annealing: forming an In2O3 film; and, controlling the resistivity in the In2O3 film. For example, the resistivity can be controlled in the range of 260 to 800 ohm-cm.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: March 20, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Sheng Teng Hsu
  • Publication number: 20070048990
    Abstract: A method of buffer layer formation for RRAM thin film deposition includes preparing a substrate; depositing a bottom electrode on the substrate; depositing a thin layer of a transition metal having a multiple valence on the bottom electrode; depositing a layer of metal oxide on the transition metal; depositing a top electrode on the metal oxide; annealing the substrate and the layers formed thereon; and completing the RRAM.
    Type: Application
    Filed: August 30, 2005
    Publication date: March 1, 2007
    Inventors: Wei-Wei Zhuang, Sheng Hsu, David Evans, Tingkai Li, Lawrence Charneski
  • Patent number: 7166485
    Abstract: A superlattice nanocrystal Si—SiO2 electroluminescence (EL) device and fabrication method have been provided. The method comprises: providing a Si substrate; forming an initial SiO2 layer overlying the Si substrate; forming an initial polysilicon layer overlying the initial SiO2 layer; forming SiO2 layer overlying the initial polysilicon layer; repeating the polysilicon and SiO2 layer formation, forming a superlattice; doping the superlattice with a rare earth element; depositing an electrode overlying the doped superlattice; and, forming an EL device. In one aspect, the polysilicon layers are formed by using a chemical vapor deposition (CVD) process to deposit an amorphous silicon layer, and annealing. Alternately, a DC-sputtering process deposits each amorphous silicon layer, and following the forming of the superlattice, polysilicon is formed by annealing the amorphous silicon layers. Silicon dioxide can be formed by either thermal annealing or by deposition using a DC-sputtering process.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: January 23, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Sheng Teng Hsu, Wei-Wei Zhuang
  • Publication number: 20070015329
    Abstract: A method is provided for forming a metal/semiconductor/metal (MSM) current limiter and resistance memory cell with an MSM current limiter. The method comprises: providing a substrate; forming an MSM bottom electrode overlying the substrate; forming a ZnOx semiconductor layer overlying the MSM bottom electrode, where x is in the range between about 1 and about 2, inclusive; and, forming an MSM top electrode overlying the semiconductor layer. The ZnOx semiconductor can be formed through a number of different processes such as spin-coating, direct current (DC) sputtering, radio frequency (RF) sputtering, metalorganic chemical vapor deposition (MOCVD), or atomic layer deposition (ALD).
    Type: Application
    Filed: August 31, 2005
    Publication date: January 18, 2007
    Inventors: Tingkai Li, Sheng Hsu, Wei-Wei Zhuang, David Evans
  • Publication number: 20070015328
    Abstract: A metal/semiconductor/metal (MSM) binary switch memory device and fabrication process are provided. The device includes a memory resistor bottom electrode, a memory resistor material over the memory resistor bottom electrode, and a memory resistor top electrode over the memory resistor material. An MSM bottom electrode overlies the memory resistor top electrode, a semiconductor layer overlies the MSM bottom electrode, and an MSM top electrode overlies the semiconductor layer. The MSM bottom electrode can be a material such as Pt, Ir, Au, Ag, TiN, or Ti. The MSM top electrode can be a material such as Pt, Ir, Au, TiN, Ti, or Al. The semiconductor layer can be amorphous Si, ZnO2, or InO2.
    Type: Application
    Filed: July 18, 2005
    Publication date: January 18, 2007
    Inventors: Sheng Hsu, Tingkai Li
  • Publication number: 20070015348
    Abstract: A metal/semiconductor/metal (MSM) back-to-back Schottky diode, a resistance memory device using the MSM diode, and associated fabrication processes are provided. The method includes: providing a substrate; forming a metal bottom electrode overlying the substrate, having a first work function; forming a semiconductor layer overlying the metal bottom electrode, having a second work function, less than the first work function; and, forming a metal top electrode overlying the semiconductor layer, having a third work function, greater than the second work function. The metal top and bottom electrodes can be materials such as Pt, Au, Ag, TiN, Ta, Ru, or TaN. In one aspect, the metal top electrode and metal bottom electrode are made from the same material and, therefore, have identical work functions. The semiconductor layer can be a material such as amorphous silicon (a:Si), polycrystalline Si, InOx, or ZnO.
    Type: Application
    Filed: December 7, 2005
    Publication date: January 18, 2007
    Inventors: Sheng Hsu, Tingkai Li
  • Publication number: 20070015330
    Abstract: A method is provided for forming a metal/semiconductor/metal (MSM) back-to-back Schottky diode from a silicon (Si) semiconductor. The method deposits a Si semiconductor layer between a bottom electrode and a top electrode, and forms a MSM diode having a threshold voltage, breakdown voltage, and on/off current ratio. The method is able to modify the threshold voltage, breakdown voltage, and on/off current ratio of the MSM diode in response to controlling the Si semiconductor layer thickness. Generally, both the threshold and breakdown voltage are increased in response to increasing the Si thickness. With respect to the on/off current ratio, there is an optimal thickness. The method is able to form an amorphous Si (a-Si) and polycrystalline Si (polySi) semiconductor layer using either chemical vapor deposition (CVD) or DC sputtering. The Si semiconductor can be doped with a Group V donor material, which decreases the threshold voltage and increases the breakdown voltage.
    Type: Application
    Filed: May 17, 2006
    Publication date: January 18, 2007
    Inventors: Tingkai Li, Sheng Hsu, David Evans
  • Publication number: 20070010037
    Abstract: A superlattice nanocrystal Si—SiO2 electroluminescence (EL) device and fabrication method have been provided. The method comprises: providing a Si substrate; forming an initial SiO2 layer overlying the Si substrate; forming an initial polysilicon layer overlying the initial SiO2 layer; forming SiO2 layer overlying the initial polysilicon layer; repeating the polysilicon and SiO2 layer formation, forming a superlattice; doping the superlattice with a rare earth element; depositing an electrode overlying the doped superlattice; and, forming an EL device. In one aspect, the polysilicon layers are formed by using a chemical vapor deposition (CVD) process to deposit an amorphous silicon layer, and annealing. Alternately, a DC-sputtering process deposits each amorphous silicon layer, and following the forming of the superlattice, polysilicon is formed by annealing the amorphous silicon layers. Silicon dioxide can be formed by either thermal annealing or by deposition using a DC-sputtering process.
    Type: Application
    Filed: July 5, 2005
    Publication date: January 11, 2007
    Inventors: Tingkai Li, Sheng Hsu, Wei-Wei Zhuang
  • Patent number: 7157287
    Abstract: A method of fabricating a CMR thin film for use in a semiconductor device includes preparing a CMR precursor in the form of a metal acetate based acetic acid solution; preparing a wafer; placing a wafer in a spin-coating chamber; spin-coating and heating the wafer according to the following: injecting the CMR precursor into a spin-coating chamber and onto the surface of the wafer in the spin-coating chamber; accelerating the wafer to a spin speed of between about 1500 RPM to 3000 RPM for about 30 seconds; baking the wafer at a temperature of about 180° C. for about one minute; ramping the temperature to about 230° C.; baking the wafer for about one minute at the ramped temperature; annealing the wafer at about 500° C. for about five minutes; repeating said spin-coating and heating steps at least three times; post-annealing the wafer at between about 500° C. to 600° C. for between about one to six hours in dry, clean air; and completing the semiconductor device.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: January 2, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei-Wei Zhuang, Tingkai Li, Wei Pan, David R. Evans, Sheng Teng Hsu
  • Patent number: 7157111
    Abstract: A method of selectively depositing a ferroelectric thin film on an indium-containing substrate in a ferroelectric device includes preparing a silicon substrate; depositing an indium-containing thin film on the substrate; patterning the indium containing thin film; annealing the structure; selectively depositing a ferroelectric layer by MOCVD; annealing the structure; and completing the ferroelectric device.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: January 2, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Sheng Teng Hsu, Bruce Dale Ulrich