Patents by Inventor Tingyu YAO

Tingyu YAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240192334
    Abstract: A Lidar system and method is provided for adaptive control. The Lidar system comprises: an array of emitters each of which is individually addressable and controlled to emit a multi-pulse sequence, at least a subset of the emitters are activated to emit multi-pulse sequences concurrently according to an emission pattern; an array of photosensors each of which is individually addressable, at least a subset of the photosensors are enabled to receive light pulses according to a sensing pattern, each of the subset of photosensors is configured to detect returned light pulses returned and generate an output signal indicative of an amount of optical energy associated with at least a subset of the light pulses; and one or more processors electrically coupled to the array of emitters and the array of photosensors and configured to generate the emission pattern and the sensing pattern based on one or more real-time conditions.
    Type: Application
    Filed: December 20, 2023
    Publication date: June 13, 2024
    Inventors: Xuezhou Zhu, Kai Sun, Shaoqing Xiang, Jin Yang, Chenluan Wang, Xugang Liu, Wenyi Zhu, Tingyu Yao, Shixiang Wu, Hui Yin
  • Patent number: 11899137
    Abstract: A Lidar system and method is provided for adaptive control. The Lidar system comprises: an array of emitters each of which is individually addressable and controlled to emit a multi-pulse sequence, at least a subset of the emitters are activated to emit multi-pulse sequences concurrently according to an emission pattern; an array of photosensors each of which is individually addressable, at least a subset of the photosensors are enabled to receive light pulses according to a sensing pattern, each of the subset of photosensors is configured to detect returned light pulses returned and generate an output signal indicative of an amount of optical energy associated with at least a subset of the light pulses; and one or more processors electrically coupled to the array of emitters and the array of photosensors and configured to generate the emission pattern and the sensing pattern based on one or more real-time conditions.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: February 13, 2024
    Assignee: Hesai Technology Co., Ltd.
    Inventors: Xuezhou Zhu, Kai Sun, Shaoqing Xiang, Jin Yang, Chenluan Wang, Xugang Liu, Wenyi Zhu, Tingyu Yao, Shixiang Wu, Hui Yin
  • Publication number: 20230152432
    Abstract: A lidar and a control method of the lidar, and an addressing circuit are provided. The control method of the lidar includes: acquiring an address of a starting group of detection units is paired with a group of activated emitters in the lidar, and generating a corresponding control signal for detection, where the address of the starting group of the detection units is determined based on a result of a calibration process performing a decoding process and a logic operation process on the control signal for detection, determining the address of the corresponding starting group of the detection units that has been processed by the calibration process, and determining addresses of other groups of detection units to be synchronously activated at the same time with the starting group of the detection units, determining a channel selecting address, and generating a selecting and controlling signal for corresponding channels.
    Type: Application
    Filed: December 29, 2022
    Publication date: May 18, 2023
    Applicant: HESAI TECHNOLOGY CO., LTD.
    Inventors: Chenluan WANG, Xuezhou ZHU, Wenyi ZHU, Tingyu YAO, Shaoqing XIANG
  • Publication number: 20210247499
    Abstract: A Lidar system and method is provided for adaptive control. The Lidar system comprises: an array of emitters each of which is individually addressable and controlled to emit a multi-pulse sequence, at least a subset of the emitters are activated to emit multi-pulse sequences concurrently according to an emission pattern; an array of photosensors each of which is individually addressable, at least a subset of the photosensors are enabled to receive light pulses according to a sensing pattern, each of the subset of photosensors is configured to detect returned light pulses returned and generate an output signal indicative of an amount of optical energy associated with at least a subset of the light pulses; and one or more processors electrically coupled to the array of emitters and the array of photosensors and configured to generate the emission pattern and the sensing pattern based on one or more real-time conditions.
    Type: Application
    Filed: April 6, 2021
    Publication date: August 12, 2021
    Inventors: Xuezhou Zhu, Kai Sun, Shaoqing Xiang, Jin Yang, Chenluan Wang, Xugang Liu, Wenyi Zhu, Tingyu Yao, Shixiang Wu, Hui Yin
  • Patent number: 10983197
    Abstract: A Lidar system and method is provided for adaptive control. The Lidar system comprises: an array of emitters each of which is individually addressable and controlled to emit a multi-pulse sequence, at least a subset of the emitters are activated to emit multi-pulse sequences concurrently according to an emission pattern; an array of photosensors each of which is individually addressable, at least a subset of the photosensors are enabled to receive light pulses according to a sensing pattern, each of the subset of photosensors is configured to detect returned light pulses returned and generate an output signal indicative of an amount of optical energy associated with at least a subset of the light pulses; and one or more processors electrically coupled to the array of emitters and the array of photosensors and configured to generate the emission pattern and the sensing pattern based on one or more real-time conditions.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: April 20, 2021
    Assignee: HESAI TECHNOLOGY CO., LTD.
    Inventors: Xuezhou Zhu, Kai Sun, Shaoqing Xiang, Jin Yang, Chenluan Wang, Xugang Liu, Wenyi Zhu, Tingyu Yao, Shixiang Wu, Hui Yin
  • Patent number: 10833894
    Abstract: The present disclosure provides a hybrid-mode laser drive circuit and an optical emitting system. An equalizer circuit is configured to generate, according to a data signal and a clock signal, an equalization signal for compensating a hybrid-mode laser drive circuit; the hybrid-mode laser drive circuit is connected to an output end of the equalizer circuit, and is configured to generate a corresponding drive signal according to an output signal of the equalizer circuit, so as to drive a light emitting diode to generate a corresponding optical signal; a third current source is connected between a power supply voltage and an output end of the hybrid-mode laser drive circuit; an anode of the light emitting diode is connected to the output end of the hybrid-mode laser drive circuit and a cathode of the light emitting diode is connected to a power supply ground.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: November 10, 2020
    Assignee: PhotonIC Technologies (Shanghai) Co., Ltd.
    Inventors: Shang Hu, Tingyu Yao, Rui Bai, Xuefeng Chen, Pei Jiang
  • Patent number: 10749606
    Abstract: The present disclosure provides a pulse generation module, and an optical communication transmitter system and a non-linear equalizing method thereof, the pulse generation module includes: a mode detector that outputs a corresponding effective detection signal after detecting a preset mode, a controller that generates a corresponding selection signal according to a jump mode, and an equalizing pulse generator that generates a corresponding equalizing pulse signal according to the effective detection signal and the selection signal. A jump mode of each piece of data in a data stream is detected, and a corresponding equalizing pulse signal is generated based on the detected jump mode, to compensate for nonlinearity of a laser driving signal. Information about a rising edge and a falling edge is determined by detecting a jump mode of data, a balanced current is provided for a particular purpose, and nonlinearity of a laser is compensated by current output.
    Type: Grant
    Filed: July 4, 2019
    Date of Patent: August 18, 2020
    Assignee: PhotonIC Technologies (Shanghai) Co., Ltd.
    Inventors: Shang Hu, Tingyu Yao, Rui Bai, Xuefeng Chen, Pei Jiang
  • Publication number: 20200059301
    Abstract: The present disclosure provides a pulse generation module, and an optical communication transmitter system and a non-linear equalizing method thereof, the pulse generation module includes: a mode detector that outputs a corresponding effective detection signal after detecting a preset mode, a controller that generates a corresponding selection signal according to a jump mode, and an equalizing pulse generator that generates a corresponding equalizing pulse signal according to the effective detection signal and the selection signal. A jump mode of each piece of data in a data stream is detected, and a corresponding equalizing pulse signal is generated based on the detected jump mode, to compensate for nonlinearity of a laser driving signal. Information about a rising edge and a falling edge is determined by detecting a jump mode of data, a balanced current is provided for a particular purpose, and nonlinearity of a laser is compensated by current output.
    Type: Application
    Filed: July 4, 2019
    Publication date: February 20, 2020
    Applicant: PhotonIC Technologies (Shanghai) Co., Ltd.
    Inventors: Shang HU, Tingyu YAO, Rui BAI, Xuefeng CHEN, Pei JIANG
  • Publication number: 20200059385
    Abstract: The present disclosure provides a hybrid-mode laser drive circuit and an optical emitting system. An equalizer circuit is configured to generate, according to a data signal and a clock signal, an equalization signal for compensating a hybrid-mode laser drive circuit; the hybrid-mode laser drive circuit is connected to an output end of the equalizer circuit, and is configured to generate a corresponding drive signal according to an output signal of the equalizer circuit, so as to drive a light emitting diode to generate a corresponding optical signal; a third current source is connected between a power supply voltage and an output end of the hybrid-mode laser drive circuit; an anode of the light emitting diode is connected to the output end of the hybrid-mode laser drive circuit and a cathode of the light emitting diode is connected to a power supply ground.
    Type: Application
    Filed: August 20, 2019
    Publication date: February 20, 2020
    Applicant: PhotonIC Technologies (Shanghai) Co., Ltd.
    Inventors: Shang HU, Tingyu YAO, Rui BAI, Xuefeng CHEN, Pei JIANG