Patents by Inventor Tissa Karunasiri

Tissa Karunasiri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10911879
    Abstract: Apparatus and methods for converting one type of speech processor unit into another type of speech processor unit.
    Type: Grant
    Filed: March 31, 2019
    Date of Patent: February 2, 2021
    Assignee: Advanced Bionics AG
    Inventors: Thomas Patrick Walsh, Carla Mann Woods, Richard C. Ross, Rankiri Tissa Karunasiri, Anthony K. Arnold, Lakshmi Narayan Mishra
  • Patent number: 10904680
    Abstract: A sound processor assembly included within a cochlear implant system includes a sound processor and a battery assembly. The sound processor includes a physical computing device configured to direct operation of a cochlear implant in accordance with a sound processing program associated with a cochlear implant implanted within a patient. The battery assembly includes an electric battery configured to provide electrical power to the sound processor, as well as a storage facility configured to store the sound processing program associated with the cochlear implant. The storage facility is integrated with the electric battery within the battery assembly. The sound processor assembly also includes a bidirectional communication interface communicatively coupling the battery assembly to the sound processor to allow the sound processor to store data to, and to retrieve stored data from, the storage facility of the battery assembly by way of the bidirectional communication interface.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: January 26, 2021
    Assignee: Advanced Bionics AG
    Inventors: R. Tissa Karunasiri, Szilard V. Gyalay, Anthony J. Spahr
  • Publication number: 20200306548
    Abstract: An exemplary system includes a sound processor configured to wirelessly communicate, while operating in a first mode, with a cochlear implant by way of a wearable headpiece coil configured to be worn on a head of a recipient of the cochlear implant, a non-wearable coil configured to be located away from the recipient, and an interface device configured to provide operating power to the non-wearable coil and communicatively couple to the sound processor while the sound processor is operating in a second mode. While the sound processor is coupled to the interface device and operating in the second mode, the non-wearable coil is configured to provide radio frequency (RF) power to the cochlear implant to keep the cochlear implant listening for commands from the sound processor.
    Type: Application
    Filed: March 30, 2019
    Publication date: October 1, 2020
    Inventors: R. Tissa Karunasiri, Mark B. Downing
  • Publication number: 20200057462
    Abstract: An amplitude shift keying (ASK) modulation system includes a linear regulator circuit powered by input direct current (DC) power at a first voltage level and that generates regulated DC power at a second voltage level tracking the first voltage level. The system also includes an intermediate DC power switching circuit that receives a digital data signal and selectively couples an intermediate power node with the input DC power at the first voltage level when the digital data signal represents a first binary value, and with the regulated DC power at the second voltage level when the digital data signal represents a second binary value. The ASK modulation system also includes a radio frequency (RF) driver circuit powered by intermediate DC power received at the intermediate power node and that delivers RF output power representative of the digital data signal to a load at an RF carrier frequency.
    Type: Application
    Filed: January 29, 2018
    Publication date: February 20, 2020
    Inventors: R. Tissa Karunasiri, Scott Kenneth Arfin
  • Publication number: 20200046977
    Abstract: An exemplary sound processor included in a cochlear implant system may include a control facility that represents a first frequency domain signal to a patient by 1) directing a cochlear implant included in the cochlear implant system to apply, during a first stimulation frame, a first monophasic stimulation pulse representative of a first temporal portion of the first frequency domain signal that corresponds to the first stimulation frame, the first monophasic stimulation pulse having a first polarity, and 2) directing the cochlear implant to apply, during a second stimulation frame that is temporally subsequent to the first stimulation frame, a second monophasic stimulation pulse representative of a second temporal portion of the first frequency domain signal that corresponds to the second stimulation frame, the second monophasic stimulation pulse configured to at least partially charge balance the first monophasic stimulation pulse and having a second polarity opposite the first polarity.
    Type: Application
    Filed: October 9, 2019
    Publication date: February 13, 2020
    Inventor: R. Tissa Karunasiri
  • Publication number: 20190372405
    Abstract: A system includes an interface assembly and electronic circuitry. The interface assembly is configured to receive DC power and a self-clocking differential signal comprising a data signal encoded with a clock signal at a clock frequency. The electronic circuitry is configured to recover, from the self-clocking differential signal, the data signal and the clock signal at the clock frequency, and to generate, based on the recovered clock signal at the clock frequency, a first synthesized clock signal at a first carrier frequency and a second synthesized clock signal at a second carrier frequency. The electronic circuitry is also configured to wirelessly transmit AC power and a data-modulated AC signal to an implantable stimulator implanted within a patient. The AC power is at the first carrier frequency and based on the DC power, while the data-modulated AC signal is at the second carrier frequency and based on the recovered data signal.
    Type: Application
    Filed: August 9, 2019
    Publication date: December 5, 2019
    Inventor: R. Tissa Karunasiri
  • Patent number: 10456578
    Abstract: An exemplary sound processor included in a cochlear implant system comprises a control facility that represents a first frequency domain signal to a patient by 1) directing a cochlear implant included in the cochlear implant system to apply, during a first stimulation frame, a first monophasic stimulation pulse representative of a first temporal portion of the first frequency domain signal that corresponds to the first stimulation frame, the first monophasic stimulation pulse having a first polarity, and 2) directing the cochlear implant to apply, during a second stimulation frame that is temporally subsequent to the first stimulation frame, a second monophasic stimulation pulse representative of a second temporal portion of the first frequency domain signal that corresponds to the second stimulation frame, the second monophasic stimulation pulse configured to at least partially charge balance the first monophasic stimulation pulse and having a second polarity opposite the first polarity.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: October 29, 2019
    Assignee: Advanced Bionics AG
    Inventor: R. Tissa Karunasiri
  • Patent number: 10418862
    Abstract: A headpiece included within a cochlear implant system includes a housing, an interface assembly disposed within the housing and communicatively coupled to a sound processor, and electronic circuitry disposed within the housing. The interface assembly receives, from the sound processor, direct current (DC) power and a self-clocking differential signal comprising a data signal encoded with a clock signal at a clock frequency. The electronic circuitry is configured to recover the data signal and the clock signal from the self-clocking differential signal, to generate synthesized clock signals at first and second carrier frequencies based on the recovered clock signal, to wirelessly transmit alternating current (AC) power at the first carrier frequency based on the DC power, and to wirelessly transmit a data-modulated AC signal at the second carrier frequency based on the recovered data signal. The AC power and data are transcutaneously transmitted to a cochlear implant implanted within a patient.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: September 17, 2019
    Assignee: Advanced Bionics AG
    Inventor: R. Tissa Karunasiri
  • Publication number: 20190230456
    Abstract: Apparatus and methods for converting one type of speech processor unit into another type of speech processor unit.
    Type: Application
    Filed: March 31, 2019
    Publication date: July 25, 2019
    Inventors: Thomas Patrick Walsh, Carla Woods Mann, Richard c. Ross, Rankiri Tissa Karunasiri, Anthony K. Amold, Lakshmi Narayan Mishra
  • Patent number: 10291993
    Abstract: Apparatus and methods for converting one type of speech processor unit into another type of speech processor unit.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: May 14, 2019
    Assignee: Advanced Bionics AG
    Inventors: Thomas Patrick Walsh, Carla Mann Woods, Richard C. Ross, Rankiri Tissa Karunasiri, Anthony K. Arnold, Lakshmi Narayan Mishra
  • Patent number: 10117031
    Abstract: An exemplary sound processor apparatus includes 1) an earhook interface assembly that includes a plurality of contacts and that is configured to interchangeably connect to a microphone assembly and an EAS receiver assembly by way of the plurality of contacts, and 2) a control module communicatively coupled to the plurality of contacts. In some examples, the control module uses the plurality of contacts as output ports to output one or more EAS signals to the EAS receiver assembly while the EAS receiver assembly is connected to the earhook interface assembly.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: October 30, 2018
    Assignee: Advanced Bionics AG
    Inventors: Lee F. Hartley, Lakshmi N. Mishra, R. Tissa Karunasiri, Logan P. Palmer
  • Publication number: 20180288536
    Abstract: A sound processor assembly included within a cochlear implant system includes a sound processor and a battery assembly. The sound processor includes a physical computing device configured to direct operation of a cochlear implant in accordance with a sound processing program associated with a cochlear implant implanted within a patient. The battery assembly includes an electric battery configured to provide electrical power to the sound processor, as well as a storage facility configured to store the sound processing program associated with the cochlear implant. The storage facility is integrated with the electric battery within the battery assembly. The sound processor assembly also includes a bidirectional communication interface communicatively coupling the battery assembly to the sound processor to allow the sound processor to store data to, and to retrieve stored data from, the storage facility of the battery assembly by way of the bidirectional communication interface.
    Type: Application
    Filed: February 22, 2018
    Publication date: October 4, 2018
    Inventors: R. Tissa Karunasiri, Szilard V. Gyalay, Anthony J. Spahr
  • Patent number: 9832577
    Abstract: An exemplary sound processor apparatus included in an auditory prosthesis system includes 1) an interface assembly that includes at least a first contact, 2) a first switchable current source having an output coupled to the first contact of the interface assembly by way of a first data line, 3) a differential transmitter having an output coupled to the first contact of the interface assembly by way of the first data line, 4) a differential receiver having an input coupled to the first contact of the interface assembly by way of the first data line, and 5) a control module communicatively coupled to the first switchable current source, the differential transmitter, and the differential receiver and configured to selectively operate in a component type detection mode and in a programming mode. Corresponding sound processor apparatuses, systems, and methods are also described.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: November 28, 2017
    Assignee: Advanced Bionics AG
    Inventors: R. Tissa Karunasiri, Logan P. Palmer
  • Patent number: 9794696
    Abstract: An exemplary sound processor apparatus included in an auditory prosthesis system includes 1) an interface assembly that includes a plurality of contacts and that facilitates interchangeable connectivity of a plurality of external components to the sound processor apparatus, and 2) a control module communicatively coupled to the plurality of contacts and that interacts with each of the external components by overloading each contact included in the plurality of contacts with a plurality of functions. Corresponding sound processor apparatuses, systems, and methods are also described.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: October 17, 2017
    Assignee: Advanced Bionics AG
    Inventors: Roger S. Meier, Logan P. Palmer, R. Tissa Karunasiri
  • Patent number: 9776000
    Abstract: An exemplary system includes 1) a programming device configured to be located external to a cochlear implant patient and communicatively coupled to a cochlear implant system associated with the patient, 2) a programming interface device communicatively coupled to the programming device and configured to be located external to the patient, and 3) a receiver communicatively coupled directly to the programming interface device. The programming device directs at least one of the cochlear implant system and the receiver to apply stimulation to the patient, records an evoked response that occurs in response to the stimulation, and performs a predetermined action in accordance with the evoked response. Corresponding systems and methods are also disclosed.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: October 3, 2017
    Assignee: Advanced Bionics AG
    Inventors: Leonid M. Litvak, Smita S. Agrawal, Gulamali Emadi, Aniket Saoji, Charles C. Finley, Guillermo A. Calle, R. Tissa Karunasiri, Kanthaiah Koka
  • Publication number: 20170223470
    Abstract: An exemplary sound processor apparatus includes 1) an earhook interface assembly that includes a plurality of contacts and that is configured to interchangeably connect to a microphone assembly and an EAS receiver assembly by way of the plurality of contacts, and 2) a control module communicatively coupled to the plurality of contacts. In some examples, the control module uses the plurality of contacts as output ports to output one or more EAS signals to the EAS receiver assembly while the EAS receiver assembly is connected to the earhook interface assembly.
    Type: Application
    Filed: February 16, 2017
    Publication date: August 3, 2017
    Inventors: Lee F. Hartley, Lakshmi N. Mishra, R. Tissa Karunasiri, Logan P. Palmer
  • Patent number: 9717907
    Abstract: An exemplary system may include a sound processor that provides radio frequency (RF) power and a cochlear implant that operates in accordance with the RF power. The cochlear implant may include a positive current source and a negative current source that may be electrically coupled to an electrode by way of a common node. The sound processor may 1) direct the cochlear implant to concurrently enable the positive and negative current sources in order to generate a current that has a first predetermined current level and that flows though the positive and negative current sources from a positive voltage supply to a negative voltage supply without providing stimulation to the electrode in a manner perceptible to the patient, and 2) determine a power level of the RF power that is required to generate the current having the first predetermined current level. Corresponding apparatuses and methods are also described.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: August 1, 2017
    Assignee: Advanced Bionics AG
    Inventor: R. Tissa Karunasiri
  • Patent number: 9717906
    Abstract: An exemplary system may include a sound processor that is communicatively coupled to a cochlear implant implanted within a patient. The cochlear implant may include a current generation circuit (402) in series with a capacitor (418) and a voltage measurement circuit (422). The sound processor may 1) direct the cochlear implant to enable the current generation circuit for a time interval, causing a current to flow to the capacitor, 2) direct the cochlear implant to use the voltage measurement circuit to measure a voltage change across the capacitor that occurs during the time interval, and 3) determine a current level of the current that flows from the current generation circuit to the capacitor. A corresponding method is also described.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: August 1, 2017
    Assignee: Advanced Bionics AG
    Inventor: R. Tissa Karunasiri
  • Patent number: 9717908
    Abstract: An exemplary cochlear implant may include 1) a current source tied to a voltage supply and having an output that is electrically coupled to an electrode included in a plurality of electrodes, 2) a mirrored current source associated with the current source and that is commanded to output a commanded current, 3) a reference load coupled to an output of the mirrored current source and that forces the mirrored current source into an out-of-compliance state in which the mirrored current source outputs a reference current that is a predetermined percentage lower than the commanded current, the reference current resulting in a dynamic reference voltage at the output of the mirrored current source, and 4) a comparator that compares a voltage at the output of the current source with the dynamic reference voltage, and outputs a signal based on the comparison. Corresponding systems and methods are also described.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: August 1, 2017
    Assignee: Advanced Bionics AG
    Inventor: R. Tissa Karunasiri
  • Patent number: 9687651
    Abstract: An exemplary sound processor may include a stimulation management facility that 1) receives an audio signal presented to the patient during a normal operation of the cochlear implant system, and 2) directs a cochlear implant of the cochlear implant system to generate and apply an electrical stimulation pulse representative of the audio signal by way of an electrode included in a plurality of electrodes coupled to the cochlear implant. The sound processor may further include an impedance management facility that determines an impedance of the electrode by directing the cochlear implant to measure a voltage level associated with the electrode while the electrical stimulation pulse is being applied by way of the electrode. Corresponding systems and methods are also described.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: June 27, 2017
    Assignee: Advanced Bionics AG
    Inventor: R. Tissa Karunasiri