Patents by Inventor Tobias A. Fuchs

Tobias A. Fuchs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11046942
    Abstract: The present invention provides engineered DNase proteins (including DNase1-like 3 and DNase1) that are useful for treating conditions characterized by neutrophil extracellular trap (NET) accumulation and/or release. In some aspects, the invention provides compositions and methods for preventing or treating vascular occlusion involving NETs. As demonstrated herein, NETs participate in a non-canonical mechanism for vascular occlusion, which is not dependent on fibrin or platelets.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: June 29, 2021
    Assignee: NEUTROLIS, INC.
    Inventors: Tobias A. Fuchs, Miguel Jiménez-Alcázar, Josephine Göbel, Hanna Englert
  • Patent number: 11046943
    Abstract: The present invention provides engineered DNase proteins (including DNase1-like 3 and DNase1) that are useful for treating conditions characterized by neutrophil extracellular trap (NET) accumulation and/or release. In some aspects, the invention provides compositions and methods for preventing or treating vascular occlusion involving NETs. As demonstrated herein, NETs participate in a non-canonical mechanism for vascular occlusion, which is not dependent on fibrin or platelets.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: June 29, 2021
    Assignee: NEUTROLIS, INC.
    Inventors: Tobias A. Fuchs, Miguel Jiménez-Alcázar, Josephine Göbel, Hanna Englert
  • Patent number: 10988746
    Abstract: The present disclosure provides engineered human extracellular DNASE proteins (e.g., variants of DNASE1 (D1), DNASE1-LIKE 1 (D1L1), DNASE1-LIKE 2 (D1L2), DNASE1-LIKE 3 Isoform 1 (D1L3), DNASE1-LIKE 3 Isoform 2 (D1L3-2), DNASE2A (D2A), and DNASE2B (D2B)) that are useful for treating conditions characterized by neutrophil extracellular trap (NET) accumulation and/or release. In accordance with the invention, the DNase variant has advantages for therapy and/or large-scale manufacturing.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: April 27, 2021
    Assignee: NEUTROLIS, INC.
    Inventors: Tobias A. Fuchs, Abdul Hakkim R.
  • Publication number: 20210040461
    Abstract: The present invention provides engineered DNase proteins (including DNase1-like 3 and DNase1) that are useful for treating conditions characterized by neutrophil extracellular trap (NET) accumulation and/or release. In some aspects, the invention provides compositions and methods for preventing or treating vascular occlusion involving NETs. As demonstrated herein, NETs participate in a non-canonical mechanism for vascular occlusion, which is not dependent on fibrin or platelets.
    Type: Application
    Filed: October 12, 2020
    Publication date: February 11, 2021
    Inventors: Tobias A. FUCHS, Miguel JIMÉNEZ-ALCÁZAR, Josephine GÖBEL, Hanna ENGLERT
  • Publication number: 20210023183
    Abstract: Embodiments of the technology described herein are based upon the discoveries that neutrophil extracellular traps (NETs) provide a stimulus for thrombus formation and that NETs are present in stored blood products. Accordingly, some embodiments relate to methods of treating and preventing toxicity of NETs and thrombosis caused by NETs. Additional embodiments are directed towards methods of treating stored blood products to prevent transfusion-related injuries.
    Type: Application
    Filed: October 2, 2020
    Publication date: January 28, 2021
    Applicant: CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Denisa D. Wagner, Tobias A. Fuchs, Simon De Meyer, Kimberly Martinod, Alexander Brill, Grace M. Thomas
  • Publication number: 20200399622
    Abstract: The present invention provides engineered DNase proteins (including DNase1-like 3 and DNase1) that are useful for treating conditions characterized by neutrophil extracellular trap (NET) accumulation and/or release. In some aspects, the invention provides compositions and methods for preventing or treating vascular occlusion involving NETs. As demonstrated herein, NETs participate in a non-canonical mechanism for vascular occlusion, which is not dependent on fibrin or platelets.
    Type: Application
    Filed: September 11, 2020
    Publication date: December 24, 2020
    Inventors: Tobias A. FUCHS, Miguel JIMÉNEZ-ALCÁZAR, Josephine GÖBEL, Hanna ENGLERT
  • Publication number: 20200347370
    Abstract: The present invention provides engineered DNase proteins (including DNase1-like 3 and DNase1) that are useful for treating conditions characterized by neutrophil extracellular trap (NET) accumulation and/or release. In some aspects, the invention provides compositions and methods for preventing or treating vascular occlusion involving NETs. As demonstrated herein, NETs participate in a non-canonical mechanism for vascular occlusion, which is not dependent on fibrin or platelets.
    Type: Application
    Filed: July 15, 2020
    Publication date: November 5, 2020
    Inventors: Tobias A. FUCHS, Miguel JIMÉNEZ-ALCÁZAR, Josephine GÖBEL, Hanna ENGLERT
  • Publication number: 20200323917
    Abstract: The present disclosure provides D1L3 enzymes having complete or partial C-terminal deletions of the basic domain (BD), which have substantially enhanced chromatin-degrading activity. In various aspects, the invention provides chromatinase enzyme therapy, which is optionally provided by delivering polynucleotides encoding chromatinases such as D1L3, or by delivering host cells expressing and secreting the same.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 15, 2020
    Inventors: Tobias A. FUCHS, Abdul HAKKIM R.
  • Patent number: 10801019
    Abstract: The present invention provides engineered DNase proteins (including DNase1-like 3 and DNase1) that are useful for treating conditions characterized by neutrophil extracellular trap (NET) accumulation and/or release. In some aspects, the invention provides compositions and methods for preventing or treating vascular occlusion involving NETs. As demonstrated herein, NETs participate in a non-canonical mechanism for vascular occlusion, which is not dependent on fibrin or platelets.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: October 13, 2020
    Assignee: NEUTROLIS, INC.
    Inventors: Tobias A. Fuchs, Miguel Jiménez-Alcázar, Josephine Göbel, Hanna Englert
  • Publication number: 20200206321
    Abstract: Embodiments of the technology described herein are based upon the discoveries that neutrophil extracellular traps (NETs) provide a stimulus for thrombus formation and that NETs are present in stored blood products. Accordingly, some embodiments relate to methods of treating and preventing toxicity of NETs and thrombosis caused by NETs. Additional embodiments are directed towards methods of treating stored blood products to prevent transfusion-related injuries.
    Type: Application
    Filed: February 27, 2020
    Publication date: July 2, 2020
    Applicant: CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Denisa D. Wagner, Tobias A. Fuchs, Simon De Meyer, Kimberly Martinod, Alexander Brill, Grace M. Thomas
  • Patent number: 10696956
    Abstract: The present invention provides engineered DNase proteins (including DNase1-like 3 and DNase1) that are useful for treating conditions characterized by neutrophil extracellular trap (NET) accumulation and/or release. In some aspects, the invention provides compositions and methods for preventing or treating vascular occlusion involving NETs. As demonstrated herein, NETs participate in a non-canonical mechanism for vascular occlusion, which is not dependent on fibrin or platelets.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: June 30, 2020
    Assignee: NEUTROLIS, INC.
    Inventors: Tobias A. Fuchs, Miguel Jiménez-Alcázar, Josephine Göbel, Hanna Englert
  • Publication number: 20200115690
    Abstract: The present disclosure provides engineered human extracellular DNASE proteins (e.g., variants of DNASE1 (D1), DNASE1-LIKE 1 (D1L1), DNASE1-LIKE 2 (D1L2), DNASE1-LIKE 3 Isoform 1 (D1L3), DNASE1-LIKE 3 Isoform 2 (D1L3-2), DNASE2A (D2A), and DNASE2B (D2B)) that are useful for treating conditions characterized by neutrophil extracellular trap (NET) accumulation and/or release. In accordance with the invention, the DNase variant has advantages for therapy and/or large-scale manufacturing.
    Type: Application
    Filed: November 27, 2019
    Publication date: April 16, 2020
    Inventors: Tobias A. FUCHS, Abdul HAKKIM R.
  • Patent number: 10617742
    Abstract: Embodiments of the technology described herein are based upon the discoveries that neturophil extracellular traps (NETs) provide a stimulus for thrombus formation and that NETs are present in stored blood products. Accordingly, some embodiments are directed towards methods of treating stored blood products to prevent transfusion-related injuries e.g., preventing transfusion-related acute lung injury (TRALI), by treating blood transfusion products with an anti-Neutrophil Extracellular Trap (NET) compound.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: April 14, 2020
    Assignee: CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Denisa D. Wagner, Tobias A. Fuchs, Simon De Meyer, Kimberly Martinod, Alexander Brill, Grace M. Thomas
  • Publication number: 20200024585
    Abstract: The present invention provides engineered DNase proteins (including DNase1-like 3 and DNase1) that are useful for treating conditions characterized by neutrophil extracellular trap (NET) accumulation and/or release. In some aspects, the invention provides compositions and methods for preventing or treating vascular occlusion involving NETs. As demonstrated herein, NETs participate in a non-canonical mechanism for vascular occlusion, which is not dependent on fibrin or platelets.
    Type: Application
    Filed: August 2, 2019
    Publication date: January 23, 2020
    Inventors: Tobias A. FUCHS, Miguel JIMÉNEZ-ALCÁZAR, Josephine GÖBEL, Hanna ENGLERT
  • Publication number: 20190374620
    Abstract: The present invention relates to the treatment of tissue adhesions, e.g. tissue adhesions that occur after surgical interventions. More specifically, the invention refers to an enzyme having DNAse activity for use in a method of treating or preventing tissue adhesions. The invention also relates to a pharmaceutical composition that comprises an enzyme having DNAse activity for use in a method of treating or preventing tissue adhesions.
    Type: Application
    Filed: January 22, 2018
    Publication date: December 12, 2019
    Inventors: Michael BOETTCHER, Tobias FUCHS
  • Publication number: 20190350178
    Abstract: The present invention relates to a non-human mammalian animal which has been modified to have in the blood, plasma and/or serum (a) an increased number of leukocytes and/or neutrophils, and (b) a reduced activity of the DNase 1 and/or DNase 1-like 3 enzymes. The non-human mammalian animal is particularly suitable for studying inflammation and/or a disease associated with inflammation. In a further aspect, the invention relates to the use of the non-human mammalian animal as a model for identifying therapeutic or diagnostic targets of inflammation and/or a disease associated with inflammation. In a still further aspect, the invention relates the use of the non-human mammalian animal as a model for drug candidate testing. In addition, a method for testing an anti-inflammatory drug candidate against extracellular DNA is provided. Finally, a method for testing an anti-inflammatory drug candidate for modifying the formation or degradation of neutrophil extracellular traps is provided.
    Type: Application
    Filed: January 22, 2018
    Publication date: November 21, 2019
    Inventors: Tobias FUCHS, Miguel JIMENEZ-ALCAZAR, Chandini RANGASWAMY
  • Patent number: 10468575
    Abstract: A thermoelectric module may include a fluid-tight housing having at least one thermoelectrically active element arranged therein. The at least one thermoelectrically active element may have a coating. The housing may form an outer encapsulation and the coating may form an inner encapsulation for the at least one thermoelectrically active element.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: November 5, 2019
    Assignee: Mahle Behr GmbH & Co. KG
    Inventors: Hans-Heinrich Angermann, Tobias Fuchs, Thomas Himmer, Volker Schall
  • Publication number: 20190234936
    Abstract: The invention relates to immunodiagnostic detection of anti-neutrophil antibodies. Object of the current invention is to improve the diagnosis of ANCA-associated diseases, in particular ANCA-associated vasculitides.
    Type: Application
    Filed: July 20, 2017
    Publication date: August 1, 2019
    Inventor: Tobias FUCHS
  • Publication number: 20170196945
    Abstract: Embodiments of the technology described herein are based upon the discoveries that neutrophil extracellular traps (NETs) provide a stimulus for thrombus formation and that NETs are present in stored blood products. Accordingly, some embodiments relate to methods of treating and preventing toxicity of NETs and thrombosis caused by NETs. Additional embodiments are directed towards methods of treating stored blood products to prevent transfusion-related injuries.
    Type: Application
    Filed: March 30, 2017
    Publication date: July 13, 2017
    Applicant: CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Denisa D. Wagner, Tobias A. Fuchs, Simon De Meyer, Kimberly Martinod, Alexander Brill, Grace M. Thomas
  • Patent number: 9642822
    Abstract: Embodiments of the technology described herein are based upon the discoveries that neturophil extracellular traps (NETs) provide a stimulus for thrombus formation and that NETs are present in stored blood products. Accordingly, some embodiments relate to methods of treating and preventing toxicity of NETs and thrombosis caused by NETs. Additional embodiments are directed towards methods of treating stored blood products to prevent transfusion-related injuries.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: May 9, 2017
    Assignee: Children's Medical Center Corporation
    Inventors: Denisa D. Wagner, Tobias A. Fuchs, Simon De Meyer, Kimberly Martinod, Alexander Brill, Grace M. Thomas