Patents by Inventor Tobias Bühren

Tobias Bühren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950846
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. Illumination points are arranged in three rings concentrically around an instrument axis; and the three rings include a first ring, a second ring and a third ring and the illumination points on the first ring and the third ring are rotated in relation to the illumination points on the second ring such that each of the illumination points on the first ring is on a common radial with one of the illumination points on the third ring and each of the illumination points on the second ring is not on the common radial.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: April 9, 2024
    Assignee: Carl Zeiss Meditec AG
    Inventors: Ralf Ebersbach, Martin Hacker, Gerard Antkowiak, Peter Klopfleisch, Ferid Bajramovic, Tobias Bühren, Matthias Reich
  • Patent number: 11766171
    Abstract: A method for capturing biometric measurement data of a patient's eye, in which the fixation is monitored during the entire biometric measurement. Information in respect of the fixation is extracted, depending on the different recording modes, from already available or additionally captured recordings and/or data. Central retinal OCT scans with absolute fixation information and frontal images with relative fixation information with or without at least partial diffuse lighting are used. On the basis of this extracted fixation information, the subsequent evaluation only uses the captured biometric measurement data captured just before, at the same time as or just after frontal images with the correct fixation. The method can also be applied to different measurement tasks, in which use is made of different measurement modes and in which the alignment of the measurement object is important for the measurement results.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: September 26, 2023
    Assignee: Carl Zeiss Meditec AG
    Inventors: Ferid Bajramovic, Wei-Jun Chen, Tobias Bühren
  • Publication number: 20220400947
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Application
    Filed: June 29, 2022
    Publication date: December 22, 2022
    Inventors: Ralf EBERSBACH, Martin HACKER, Gerard ANTKOWIAK, Peter KLOPFLEISCH, Ferid BAJRAMOVIC, Tobias BÜHREN, Matthias REICH
  • Patent number: 11399714
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: August 2, 2022
    Assignee: Carl Zeiss Meditec AG
    Inventors: Ralf Ebersbach, Martin Hacker, Gerard Antkowiak, Peter Klopfleisch, Ferid Bajramovic, Tobias Bühren, Matthias Reich
  • Publication number: 20220206208
    Abstract: Devices for generating a luminous distribution to illuminate an object with an optical waveguide that comprises at least one input coupling element and a plurality of replication regions are provided. The device is configured to provide a luminous distribution. Further provided are a keratometer, a projection device, a microscope, a calibration device, an area lamp, and a window.
    Type: Application
    Filed: March 31, 2020
    Publication date: June 30, 2022
    Applicant: Carl Zeiss Jena GmbH
    Inventors: Matthias HILLENBRAND, Daniel BUBLITZ, Thomas NOBIS, Martin HACKER, Tobias BUEHREN, Roman KLEINDIENST, Alexander PESCH
  • Patent number: 11340477
    Abstract: An ophthalmic lens has a changeable corrective effect, which automatically changes over a predetermined period of time. Further, the ophthalmic lens provides a gradually increasing undercorrection of the far point of the eye over the course of a day, which brings about a deceleration in the axial length growth of the eyeball. In addition, a method for automatically adapting a corrective effect, a pair of spectacles, and a use of an ophthalmic lens are disclosed.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: May 24, 2022
    Assignee: Carl Zeiss AG
    Inventors: Tobias Bühren, Michael Kempe
  • Publication number: 20210389609
    Abstract: An ophthalmic lens has a changeable corrective effect, which automatically changes over a predetermined period of time. Further, the ophthalmic lens provides a gradually increasing undercorrection of the far point of the eye over the course of a day, which brings about a deceleration in the axial length growth of the eyeball. In addition, a method for automatically adapting a corrective effect, a pair of spectacles, and a use of an ophthalmic lens are disclosed.
    Type: Application
    Filed: August 25, 2021
    Publication date: December 16, 2021
    Inventors: Tobias Bühren, Michael Kempe
  • Publication number: 20210145278
    Abstract: The proposed combination device combines any tonometric metrology with a drug application to administer glaucoma medication on an eye. Several technical concepts are proposed and exemplary embodiments for rebound tonometry and air-puff tonometry are shown. However other methods such as optical coherence elastography (OCE) could also be used. The Solutions provide home care tonometry offerings which host the capability to administer glaucoma medication.
    Type: Application
    Filed: April 29, 2019
    Publication date: May 20, 2021
    Inventors: Rudolf Murai VON BÜNAU, Johannes KINDT, Martin HACKER, Tobias BÜHREN, Thomas K. FITZMORRIS, Daniel BUBLITZ, Steffen WAGNER, Wibke HELLMICH
  • Patent number: 10959612
    Abstract: A method for classifying a cataract of an eye to determine parameters for pre-setting phaco-treatment instruments. OCT-based measurements are realized. The OCT-based scans are analysed using imaging technology and the local distribution of the cataract is determined. The cataract is classified on the basis of comparison values and the local distribution and classification of the cataract are used to identify parameters for pre-setting phaco-treatment instruments. Even though the proposed method for classifying the cataract of an eye is provided for determining parameters for pre-setting phaco-treatment instruments, it should equally also be used for determining parameters for pre-setting treatment instruments based on fs-lasers.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: March 30, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Akhil Ramesh Kumar, Tobias Bühren, Joao Emanuel Goncalves Bras, Manfred Dick, Ferid Bajramovic, Martin Volkwardt
  • Publication number: 20210076934
    Abstract: A method for capturing biometric measurement data of a patient's eye, in which the fixation is monitored during the entire biometric measurement. Information in respect of the fixation is extracted, depending on the different recording modes, from already available or additionally captured recordings and/or data. Central retinal OCT scans with absolute fixation information and frontal images with relative fixation information with or without at least partial diffuse lighting are used. On the basis of this extracted fixation information, the subsequent evaluation only uses the captured biometric measurement data captured just before, at the same time as or just after frontal images with the correct fixation. The method can also be applied to different measurement tasks, in which use is made of different measurement modes and in which the alignment of the measurement object is important for the measurement results.
    Type: Application
    Filed: January 17, 2019
    Publication date: March 18, 2021
    Applicant: Carl Zeiss Meditec AG
    Inventors: Ferid BAJRAMOVIC, Wei-Jun CHEN, Tobias BÜHREN
  • Patent number: 10893799
    Abstract: A method for determining the topography of the cornea of an eye on the basis of an optical, contactless data capture. In the method for determining the topography of the cornea of an eye, which is based on a deflectometric method, the deflectometric measurements are carried out with the aid of a keratometric method by virtue of additional OCT-based scans being made at the keratometric measurement points, wherein the two measurement systems are registered to one another and both the keratometric and the OCT-based measurement values are recorded and used for mutual calibration to determine and output the topographic data. The proposed method serves to determine the topography of the cornea of an eye. It is helpful to ascertain the topography in order to be able to draw conclusions about possible pathological changes. Moreover, the exact measurement of the corneal topography is of great importance for correcting refractive errors.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: January 19, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Manfred Dick, Ferid Bajramovic, Wei-Jun Chen, Tobias Bühren, Matthias Reich, Jörg Meissner, Martin Kühner
  • Publication number: 20200345228
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Application
    Filed: June 26, 2020
    Publication date: November 5, 2020
    Inventors: Ralf EBERSBACH, Martin HACKER, Gerard ANTKOWIAK, Peter KLOPFLEISCH, Ferid BAJRAMOVIC, Tobias BÜHREN, Matthias REICH
  • Patent number: 10709326
    Abstract: Postoperative lens position is predicted on the basis of known measured values, such as the corneal thickness, the depth of the anterior chamber, the eye length, and the distances of the capsular bag equator and/or of the lens haptic from the anterior surface of the lens. In addition, the calculation also takes into account the attitude of the intraocular lens, for which purpose additional parameters of the pseudophakic eye are used that have not previously been taken into consideration. The proposed method is suitable for a more exact prediction of the strength and nature of an intraocular lens to be implanted in a pseudophakic eye in the context of cataract surgery or of a refractive intervention. The method is based on the use of suitable calculation methods, e.g. geometric optical formulae, or of ray tracing.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: July 14, 2020
    Assignee: Carl Zeiss Meditec AG
    Inventors: Wilfried Bissmann, Tobias Bühren, Michael Trost
  • Patent number: 10694941
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: June 30, 2020
    Assignee: Carl Zeiss Meditec AG
    Inventors: Ralf Ebersbach, Martin Hacker, Gerard Antkowiak, Peter Klopfleisch, Ferid Bajramovic, Tobias Bühren, Matthias Reich
  • Publication number: 20190387969
    Abstract: A method for determining the topography of the cornea of an eye on the basis of an optical, contactless data capture. In the method for determining the topography of the cornea of an eye, which is based on a deflectometric method, the deflectometric measurements are carried out with the aid of a keratometric method by virtue of additional OCT-based scans being made at the keratometric measurement points, wherein the two measurement systems are registered to one another and both the keratometric and the OCT-based measurement values are recorded and used for mutual calibration to determine and output the topographic data. The proposed method serves to determine the topography of the cornea of an eye. It is helpful to ascertain the topography in order to be able to draw conclusions about possible pathological changes. Moreover, the exact measurement of the corneal topography is of great importance for correcting refractive errors.
    Type: Application
    Filed: September 5, 2019
    Publication date: December 26, 2019
    Inventors: Manfred DICK, Ferid BAJRAMOVIC, Wei-Jun CHEN, Tobias BÜHREN, Matthias REICH, Jörg MEISSNER, Martin KÜHNER
  • Patent number: 10420463
    Abstract: A method for determining the topography of the cornea of an eye on the basis of an optical, contactless data capture. In the method for determining the topography of the cornea of an eye, which is based on a deflectometric method, the deflectometric measurements are carried out with the aid of a keratometric method by virtue of additional OCT-based scans being made at the keratometric measurement points, wherein the two measurement systems are registered to one another and both the keratometric and the OCT-based measurement values are recorded and used for mutual calibration to determine and output the topographic data. The proposed method serves to determine the topography of the cornea of an eye. It is helpful to ascertain the topography in order to be able to draw conclusions about possible pathological changes. Moreover, the exact measurement of the corneal topography is of great importance for correcting refractive errors.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: September 24, 2019
    Assignee: Carl Zeiss Meditec AG
    Inventors: Manfred Dick, Ferid Bajramovic, Wei-Jun Chen, Tobias Bühren, Matthias Reich, Jörg Meissner, Martin Kühner
  • Patent number: 10194797
    Abstract: A method for selecting an intraocular lens (IOL) to be implanted into an eye, in which the selection is based on a non-paraxial approach. In a ray tracing method for selecting an intraocular lens to be implanted into an eye with a simplified, centered optical system, in addition to the preoperatively measured biometric values, the effective lens position of the corresponding eye and the optical transfer function of the IOLs are used, which are calculated for a standardized distance behind the equatorial plane of the IOL. The method may be used to select an intraocular lens to be implanted into an eye and is equally suitable for spherical, aspherical, toric and multifocal IOLs.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: February 5, 2019
    Assignee: Carl Zeiss Meditec AG
    Inventors: Rudolf Murai von Bünau, Tobias Bühren
  • Patent number: 10123687
    Abstract: A method for selecting an intraocular lens (IOL), to optimize the results of refractive procedures on the eye. According to the invention, the method for selecting the IOL includes: a) determining the required biometrical parameters of the eye; b) using the parameters for a corresponding eye model; c) evaluating, using ray tracing, the data of an IOL to be implanted; d) selecting, on the basis of said data, an IOL to be implanted; and e) repeating the method steps c) and d) for further suitable IOLs. To optimize the method, different measuring methods are used to determine the biometrical parameters, a corresponding patient-specific eye model is identified, and, when selecting the IOL, additional retinal image metrics are taken into consideration alongside the determined data. The method according to the invention permits the optimized selection of a spherical, aspheric, toric or multifocal IOL for implantation.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: November 13, 2018
    Assignee: Carl Zeiss Meditec AG
    Inventors: Tobias Bühren, Michael Trost, Christopher Weth, Ferid Bajramovic, Wei-Jun Chen, Martin Volkwardt, Michael Zimmermann
  • Publication number: 20180206718
    Abstract: A method for determining the topography of the cornea of an eye on the basis of an optical, contactless data capture. In the method for determining the topography of the cornea of an eye, which is based on a deflectometric method, the deflectometric measurements are carried out with the aid of a keratometric method by virtue of additional OCT-based scans being made at the keratometric measurement points, wherein the two measurement systems are registered to one another and both the keratometric and the OCT-based measurement values are recorded and used for mutual calibration to determine and output the topographic data. The proposed method serves to determine the topography of the cornea of an eye. It is helpful to ascertain the topography in order to be able to draw conclusions about possible pathological changes. Moreover, the exact measurement of the corneal topography is of great importance for correcting refractive errors.
    Type: Application
    Filed: July 6, 2016
    Publication date: July 26, 2018
    Applicant: Carl Zeiss Meditec AG
    Inventors: Manfred DICK, Ferid BAJRAMOVIC, Wei-Jun CHEN, Tobias BÜHREN, Matthias REICH, Jörg MEISSNER, Martin KÜHNER
  • Publication number: 20180206717
    Abstract: A method for classifying a cataract of an eye to determine parameters for pre-setting phaco-treatment instruments. OCT-based measurements are realized. The OCT-based scans are analysed using imaging technology and the local distribution of the cataract is determined. The cataract is classified on the basis of comparison values and the local distribution and classification of the cataract are used to identify parameters for pre-setting phaco-treatment instruments. Even though the proposed method for classifying the cataract of an eye is provided for determining parameters for pre-setting phaco-treatment instruments, it should equally also be used for determining parameters for pre-setting treatment instruments based on fs-lasers.
    Type: Application
    Filed: July 6, 2016
    Publication date: July 26, 2018
    Applicant: Carl Zeiss Meditec AG
    Inventors: Akhil RAMESH KUMAR, Tobias BÜHREN, Joao Emanuel Goncalves BRAS, Manfred DICK, Ferid BAJRAMOVIC, Martin VOLKWARDT