Patents by Inventor Tobias Schenk

Tobias Schenk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10662931
    Abstract: A diaphragm cell for damping pressure pulsations in a low-pressure region of a piston pump has two axially deformable diaphragms that are connected along their radial peripheries and enclose a gas space. The diaphragms each have a central region that extends over no less than 50% of the cross-sectional surface area of the diaphragms. The diaphragms are of undulating shape in the central region, which is curved axially outwards in its radially inner region and in its radially outer region. The diaphragms further include an axially inwardly curved annular region that is arranged between and immediately adjacent to the radially inner region and the radially outer region. An axially-measured amplitude of the wave shape has a predetermined range related to the cross-sectional surface area of the diaphragms when the pressure difference is zero. The pressure difference is a pressure in the gas space minus a pressure outside the gas space.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: May 26, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Viktor Schretling, Tobias Schenk
  • Patent number: 10107245
    Abstract: A plunger fuel pump for an internal combustion engine includes a pump cylinder and a pump plunger that is axially displaceable in the pump cylinder. The plunger fuel pump has a seal with an annular basic structure arranged around the circumference of the pump plunger. The seal is produced by injection molding in an axial injection direction.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: October 23, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Oliver Albrecht, Soeren Stritzel, Tobias Schenk, Heiko Jahn
  • Publication number: 20180274525
    Abstract: A diaphragm cell for damping pressure pulsations in a low-pressure region of a piston pump has two axially deformable diaphragms that are connected along their radial peripheries and enclose a gas space. The diaphragms each have a central region that extends over no less than 50% of the cross-sectional surface area of the diaphragms. The diaphragms are of undulating shape in the central region, which is curved axially outwards in its radially inner region and in its radially outer region. The diaphragms further include an axially inwardly curved annular region that is arranged between and immediately adjacent to the radially inner region and the radially outer region. An axially-measured amplitude of the wave shape has a predetermined range related to the cross-sectional surface area of the diaphragms when the pressure difference is zero. The pressure difference is a pressure in the gas space minus a pressure outside the gas space.
    Type: Application
    Filed: August 10, 2016
    Publication date: September 27, 2018
    Inventors: Viktor Schretling, Tobias Schenk
  • Publication number: 20170009721
    Abstract: A plunger fuel pump for an internal combustion engine includes a pump cylinder and a pump plunger that is axially displaceable in the pump cylinder. The plunger fuel pump has a seal with an annular basic structure arranged around the circumference of the pump plunger. The seal is produced by injection molding in an axial injection direction.
    Type: Application
    Filed: December 23, 2014
    Publication date: January 12, 2017
    Inventors: Oliver Albrecht, Soeren Stritzel, Tobias Schenk, Heiko Jahn
  • Patent number: 8514408
    Abstract: An apparatus for measuring a curvature of a surface (1), comprising means for irradiating a first light beam (S1), a second light beam (S2) and a third light beam (S3) onto a surface (1) of a sample (12), a detector (5) comprising at least one detector plane and being adapted to detect a first position of the reflected first light beam (S1), a second position of the reflected second light beam (S2) and a third position of the reflected third light beam (S3) in the at least one detector plane, means for determining a first distance between the first position of the first light beam (S1) and the third position of the third light beam (S3) and a second distance between the second position of the second light beam (S2) and the third position of the third light beam (S3), and means for determining a mean curvature of the surface from the first distance and the second distance.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: August 20, 2013
    Assignee: Laytec Aktiengesellschaft
    Inventors: Joerg-Thomas Zettler, Tobias Schenk
  • Patent number: 8496375
    Abstract: A pyrometer that is adapted for detecting radiation in the range of 250 to 450 nm is disclosed. The pyrometer can be used for determining the temperature of a matter thermally emitting only ultraviolet-radiation. In particular, the pyrometer can include: a detector having an active area adapted for measuring thermal radiation, a longpass filter having a cut-off wavelength in the range of 400 to 450 nm, means adapted for alternately activating and deactivating the longpass filter, means adapted for measuring a first thermal radiation signal when the longpass filter is deactivated and adapted for measuring a second thermal radiation signal when the longpass filter is activated, and means adapted for determining a temperature corresponding to the measured thermal radiation from a difference of the first radiation signal and the second radiation signal.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: July 30, 2013
    Assignee: Laytec Aktiengesellschaft
    Inventors: Joerg-Thomas Zettler, Tobias Schenk, Jens Zilian
  • Patent number: 8388219
    Abstract: A method for calibrating a pyrometer a temperature of a calibration sample is determined from the ratio of a first reflectance and a second reflectance and the pyrometer is calibrated by assigning the determined temperature of the calibration sample with a thermal radiation signal measured by the pyrometer.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: March 5, 2013
    Assignee: Laytec Aktiengesellschaft
    Inventors: Joerg-Thomas Zettler, Tobias Schenk, Steffen Uredat, Jens Zilian, Bernd Henninger, Marcello Binetti, Kolja Haberland
  • Publication number: 20110064114
    Abstract: A pyrometer that is adapted for detecting radiation in the range of 250 to 450 nm is disclosed. The pyrometer can be used for determining the temperature of a matter thermally emitting only ultraviolet-radiation. In particular, the pyrometer can include: a detector having an active area adapted for measuring thermal radiation, a longpass filter having a cut-off wavelength in the range of 400 to 450 nm, means adapted for alternately activating and deactivating the longpass filter, means adapted for measuring a first thermal radiation signal when the longpass filter is deactivated and adapted for measuring a second thermal radiation signal when the longpass filter is activated, and means adapted for determining a temperature corresponding to the measured thermal radiation from a difference of the first radiation signal and the second radiation signal.
    Type: Application
    Filed: August 18, 2010
    Publication date: March 17, 2011
    Applicant: LayTec GmbH
    Inventors: Joerg-Thomas ZETTLER, Tobias SCHENK, Jens ZILIAN
  • Publication number: 20110063625
    Abstract: An apparatus for measuring a curvature of a surface (1), comprising means for irradiating a first light beam (S1), a second light beam (S2) and a third light beam (S3) onto a surface (1) of a sample (12), a detector (5) comprising at least one detector plane and being adapted to detect a first position of the reflected first light beam (S1), a second position of the reflected second light beam (S2) and a third position of the reflected third light beam (S3) in the at least one detector plane, means for determining a first distance between the first position of the first light beam (S1) and the third position of the third light beam (S3) and a second distance between the second position of the second light beam (S2) and the third position of the third light beam (S3), and means for determining a mean curvature of the surface from the first distance and the second distance.
    Type: Application
    Filed: September 15, 2010
    Publication date: March 17, 2011
    Applicant: LayTec GmbH
    Inventors: Joerg-Thomas ZETTLER, Tobias SCHENK
  • Publication number: 20100290500
    Abstract: The present invention relates to a method for calibrating a pyrometer, a method for determining the temperature of a semiconducting wafer and a system for determining the temperature of a semiconducting wafer. It is an object of the present invention to provide a method for calibrating a pyrometer which overcomes the disadvantages of the prior art.
    Type: Application
    Filed: May 11, 2010
    Publication date: November 18, 2010
    Applicant: LayTec GmbH
    Inventors: Joerg-Thomas ZETTLER, Tobias SCHENK, Steffen UREDAT, Jens ZILIAN, Bernd HENNINGER, Marcello BINETTI, Kolja HABERLAND