Patents by Inventor Tobias Sjoblom

Tobias Sjoblom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10787712
    Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: September 29, 2020
    Assignee: The Johns Hopkins University
    Inventors: Tobias Sjoblom, Sian Jones, D. Williams Parsons, Laura D. Wood, Jimmy Cheng-Ho Lin, Thomas Barber, Diana Mandelker, Bert Vogelstein, Kenneth W. Kinzler, Victor E. Velculescu
  • Publication number: 20200239970
    Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.
    Type: Application
    Filed: March 19, 2020
    Publication date: July 30, 2020
    Inventors: Tobias SJOBLOM, Sian JONES, D. Williams PARSONS, Laura D. WOOD, Jimmy Cheng-Ho LIN, Thomas BARBER, Diana MANDELKER, Bert VOGELSTEIN, Kenneth W. KINZLER, Victor E. VELCULESCU
  • Publication number: 20200048719
    Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.
    Type: Application
    Filed: October 25, 2019
    Publication date: February 13, 2020
    Inventors: Tobias SJOBLOM, Sian JONES, D. Williams PARSONS, Laura D. WOOD, Jimmy Cheng-Ho LIN, Thomas BARBER, Diana MANDELKER, Bert VOGELSTEIN, Kenneth W. KINZLER, Victor E. VELCULESCU
  • Patent number: 10325183
    Abstract: An improved system and method for digital image classification is provided. A host computer having a processor is coupled to a memory storing thereon reference feature data. A graphics processing unit (GPU) having a processor is coupled to the host computer and is configured to obtain, from the host computer, feature data corresponding to the digital image; to access, from the memory, the one or more reference feature data; and to determine a semi-metric distance based on a Poisson-Binomial distribution between the feature data and the one or more reference feature data. The host computer is configured to classify the digital image using the determined semi-metric distance.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: June 18, 2019
    Assignee: Temasek Life Sciences Laboratory Limited
    Inventors: Muthukaruppan Swaminathan, Tobias Sjoblom, Ian Cheong, Obdulio Piloto
  • Patent number: 10274405
    Abstract: A method for deparaffinizing an FFPE tissue sample comprises mixing the FFPE tissue sample with an organic solvent to form a first mixture (10). A surfactant is added to the first mixture (10) to form a second mixture. The second mixture is separated into an organic solvent layer (11) and a surfactant layer (12). The surfactant layer (12) comprises a deparaffinized tissue sample from the FFPE tissue sample. The method also comprises adding water or an aqueous solution to the separated second mixture to form an organic solvent layer (11), a water or aqueous solution layer (13) and a surfactant layer (12). This surfactant layer comprises the deparaffinized tissue sample.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: April 30, 2019
    Assignee: EXSCALE BIOSPECIMEN SOLUTIONS AB
    Inventors: Lucy Mathot, Karin Hartman, Tobias Sjöblom
  • Publication number: 20180148713
    Abstract: A method for deparaffinizing an FFPE tissue sample comprises mixing the FFPE tissue sample with an organic solvent to form a first mixture (10). A surfactant is added to the first mixture (10) to form a second mixture. The second mixture is separated into an organic solvent layer (11) and a surfactant layer (12). The surfactant layer (12) comprises a deparaffinized tissue sample from the FFPE tissue sample. The method also comprises adding water or an aqueous solution to the separated second mixture to form an organic solvent layer (11), a water or aqueous solution layer (13) and a surfactant layer (12). This surfactant layer comprises the deparaffinized tissue sample.
    Type: Application
    Filed: November 25, 2016
    Publication date: May 31, 2018
    Inventors: Lucy MATHOT, Karin HARTMAN, Tobias SJÖBLOM
  • Publication number: 20170362659
    Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.
    Type: Application
    Filed: January 24, 2017
    Publication date: December 21, 2017
    Applicant: The Johns Hopkins University
    Inventors: Tobias SJOBLOM, Sian JONES, D. Williams PARSONS, Laura D. WOOD, Jimmy Cheng-Ho LIN, Thomas BARBER, Diana MANDELKER, Bert VOGELSTEIN, Kenneth W. KINZLER, Victor E. VELCULESCU
  • Publication number: 20170249535
    Abstract: An improved system and method for digital image classification is provided. A host computer having a processor is coupled to a memory storing thereon reference feature data. A graphics processing unit (GPU) having a processor is coupled to the host computer and is configured to obtain, from the host computer, feature data corresponding to the digital image; to access, from the memory, the one or more reference feature data; and to determine a semi-metric distance based on a Poisson-Binomial distribution between the feature data and the one or more reference feature data. The host computer is configured to classify the digital image using the determined semimetric distance.
    Type: Application
    Filed: September 15, 2015
    Publication date: August 31, 2017
    Inventors: Muthukaruppan SWAMINATHAN, Tobias SJOBLOM, Ian CHEONG, Obdulio PILOTO
  • Patent number: 9551037
    Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: January 24, 2017
    Assignee: The Johns Hopkins University
    Inventors: Tobias Sjoblom, Sian Jones, D. Williams Parsons, Laura D. Wood, Jimmy Cheng-Ho Lin, Thomas Barber, Diana Mandelker, Bert Vogelstein, Kenneth W. Kinzler, Victor E. Velculescu
  • Publication number: 20150167095
    Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.
    Type: Application
    Filed: March 25, 2014
    Publication date: June 18, 2015
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Tobias SJOBLOM, Sian JONES, D. Williams PARSONS, Laura D. WOOD, Jimmy Cheng-Ho LIN, Thomas BARBER, Diana MANDELKER, Bert VOGELSTEIN, Kenneth W. KINZLER, Victor E. VELCULESCU
  • Publication number: 20140377754
    Abstract: Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalogue the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene “mountains” and a much larger number of gene “hills” that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.
    Type: Application
    Filed: August 5, 2014
    Publication date: December 25, 2014
    Inventors: Laura D. WOOD, D. Williams PARSONS, Sian JONES, Jimmy Cheng-Ho LIN, Tobias SJOBLOM, Thomas BARBER, Giovanni PARMIGIANI, Victor VELCULESCU, Kenneth W. KINZLER, Bert VOGELSTEIN
  • Patent number: 8889393
    Abstract: The invention provides a process and kit for serial isolation of DNA and RNA from the same sample. First, a siliceous solid support with preferential affinity for DNA over RNA is used to capture DNA in a lysate of a sample. Next, a siliceous solid support with similar affinity for RNA and DNA is used to capture RNA from the same lysate. The respective solid supports are recovered independent of each other, washed, and their bound nucleotide species are eluted. The invention further provides DNA and RNA prepared using the process in a minimal number of steps employing a minimal number of reagents. As the invention yields DNA and RNA of high quality and is amenable to automation, the invention may be used widely in the healthcare and pharmaceutical industries.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: November 18, 2014
    Assignee: ExScale Biospecimen Solutions AB
    Inventors: Tobias Sjöblom, Lucy Mathot
  • Patent number: 8741573
    Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: June 3, 2014
    Assignee: The Johns Hopkins University
    Inventors: Tobias Sjoblom, Sian Jones, D. Williams Parsons, Laura D. Wood, Jimmy Lin, Thomas Barber, Diana Mandelker, Bert Vogelstein, Kenneth W. Kinzler, Victor E. Velculesu
  • Publication number: 20130196312
    Abstract: Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalogue the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene “mountains” and a much larger number of gene “hills” that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.
    Type: Application
    Filed: September 28, 2011
    Publication date: August 1, 2013
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Laura D. WOOD, Williams D. PARSONS, Sian JONES, Jimmy LIN, Tobias SJÖBLOM, Thomas BARBER, Giovanni PARMIGIANI, Victor VELCULESCU, Kenneth W. KINZLER, Bert VOGELSTEIN
  • Publication number: 20130164819
    Abstract: The invention provides a process and kit for serial isolation of DNA and RNA from the same sample. First, a siliceous solid support with preferential affinity for DNA over RNA is used to capture DNA in a lysate of a sample. Next, a siliceous solid support with similar affinity for RNA and DNA is used to capture RNA from the same lysate. The respective solid supports are recovered independent of each other, washed, and their bound nucleotide species are eluted. The invention further provides DNA and RNA prepared using the process in a minimal number of steps employing a minimal number of reagents. As the invention yields DNA and RNA of high quality and is amenable to automation, the invention may be used widely in the healthcare and pharmaceutical industries.
    Type: Application
    Filed: June 27, 2011
    Publication date: June 27, 2013
    Inventors: Tobias Sjöblom, Lucy Mathot
  • Publication number: 20100316995
    Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.
    Type: Application
    Filed: August 13, 2007
    Publication date: December 16, 2010
    Applicant: JOHNS HOPKINS UNIVERSITY
    Inventors: Tobias Sjoblom, Sian Jones, D. Williams Parsons, Laura D. Wood, Jimmy Lin, Thomas Barber, Diana Mandelker, Bert Vogelstein, Kenneth W. Kinzler, Victor E. Velculesu
  • Publication number: 20090123928
    Abstract: Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalogue the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene “mountains” and a much larger number of gene “hills” that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.
    Type: Application
    Filed: October 8, 2008
    Publication date: May 14, 2009
    Applicant: The Johns Hopkins University
    Inventors: Laura D. Wood, Williams D. Parsons, Sian Jones, Jimmy Lin, Tobias Sjoblom, Thomas Barber, Giovanni Parmigiani, Victor Velculescu, Kenneth W. Kinzler, Bert Vogelstein