Patents by Inventor Tobin Kaufman-Osborn

Tobin Kaufman-Osborn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11066747
    Abstract: Implementations described herein relate to apparatus and methods for self-assembled monolayer (SAM) deposition. Apparatus described herein includes processing chambers having various vapor phase delivery apparatus fluidly coupled thereto. SAM precursors may be delivered to process volumes of the chambers via various apparatus which is heated to maintain the precursors in vapor phase. In one implementation, a first ampoule or vaporizer configured to deliver a SAM precursor may be fluidly coupled to the process volume of a process chamber. A second ampoule or vaporizer configured to deliver a material different from the SAM precursor may also be fluidly coupled to the process volume of the process chamber.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: July 20, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Qiwei Liang, Adib Khan, Tobin Kaufman-Osborn, Srinivas D. Nemani, Ludovic Godet
  • Publication number: 20210189562
    Abstract: Methods of depositing a film selectively onto a first substrate surface relative to a second substrate surface are described. The methods include exposing the substrate surfaces to a blocking compound to selectively form a blocking layer on at least a portion of the first surface over the second surface. The substrate is sequentially exposed to a metal precursor with a kinetic diameter in excess of 21 angstroms and a reactant to selectively form a metal-containing layer on the second surface over the blocking layer or the first surface. The relatively larger metal precursors of some embodiments allow for the use of blocking layers with gaps or voids without the loss of selectivity.
    Type: Application
    Filed: February 23, 2021
    Publication date: June 24, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Bhaskar Jyoti Bhuyan, Mark Saly, David Thompson, Tobin Kaufman-Osborn, Kurt Fredrickson, Thomas Knisley, Liqi Wu
  • Patent number: 10954594
    Abstract: The present disclosure generally relate to a semiconductor processing apparatus. In one embodiment, a processing chamber is disclosed herein. The processing chamber includes a chamber body and lid defining an interior volume, the lid configured to support a housing having a cap, a substrate support disposed in the interior volume, a vaporizer coupled to the cap and having an outlet open to the interior volume of the processing chamber, wherein the vaporizer is configured to deliver a precursor gas to a processing region defined between the vaporizer and the substrate support, and a heater disposed adjacent to the vaporizer, wherein the heater is configured to heat the vaporizer.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: March 23, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Viachslav Babayan, Qiwei Liang, Tobin Kaufman-Osborn, Ludovic Godet, Srinivas D. Nemani
  • Patent number: 10947621
    Abstract: A method and apparatus for delivering gases to a semiconductor processing system are provided. In some embodiments, the apparatus includes a gas inlet line having an inlet valve; a gas outlet line having an outlet valve; a gas flow controller arranged to control the flow through the inlet valve; an orifice contained within at least one of the gas outlet line, the outlet valve, a chemical ampoule outlet valve, or outlet isolation valve; a chemical ampoule fluidly coupled to at least one of the gas inlet line and the gas outlet line; and a processing chamber. In some embodiments, the apparatus further includes a check valve, one or more orifices, and/or a heated divert line.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: March 16, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Adib Khan, Qiwei Liang, Srinivas D. Nemani, Tobin Kaufman-Osborn
  • Publication number: 20210074505
    Abstract: In one example, a chamber inlet assembly includes a chamber inlet, an outer coupling for a delivery line, and an inner coupling for a processing region of a processing chamber. The inner coupling and the outer coupling are on inner and outer ends, respectively, of the chamber inlet, wherein a cross-sectional area of the inner coupling is larger than a cross-sectional area of the outer coupling. The chamber inlet assembly also includes a longitudinal profile including the inner and outer ends and a first side and a second side, the first and second sides being on opposite sides of the chamber inlet, wherein a shape of the longitudinal profile comprises at least one of triangular, modified triangular, trapezoidal, modified trapezoidal, rectangular, modified rectangular, rhomboidal, and modified rhomboidal. The chamber inlet assembly also includes cassette including the chamber inlet and configured to set into a side wall of the processing chamber.
    Type: Application
    Filed: November 23, 2020
    Publication date: March 11, 2021
    Inventors: Eric Kihara SHONO, Vishwas Kumar PANDEY, Christopher S. OLSEN, Hansel LO, Agus Sofian TJANDRA, Taewan KIM, Tobin KAUFMAN-OSBORN
  • Publication number: 20200402792
    Abstract: Methods of depositing a film selectively onto a first material relative to a second material are described. The substrate is pre-cleaned by heating the substrate to a first temperature, cleaning contaminants from the substrate and activating the first surface to promote formation of a self-assembled monolayer (SAM) on the first material. A SAM is formed on the first material by repeated cycles of SAM molecule exposure, heating and reactivation of the first material. A final exposure to the SAM molecules is performed prior to selectively depositing a film on the second material. Apparatus to perform the selective deposition are also described.
    Type: Application
    Filed: September 8, 2020
    Publication date: December 24, 2020
    Inventors: Chang Ke, Lei Zhou, Biao Liu, Cheng Pan, Yuanhong Guo, Liqi Wu, Michael S. Jackson, Ludovic Godet, Tobin Kaufman-Osborn, Erica Chen, Paul F. Ma
  • Patent number: 10847337
    Abstract: In one example, a chamber inlet assembly includes a chamber inlet, an outer coupling for a delivery line, and an inner coupling for a processing region of a processing chamber. The inner coupling and the outer coupling are on inner and outer ends, respectively, of the chamber inlet, wherein a cross-sectional area of the inner coupling is larger than a cross-sectional area of the outer coupling. The chamber inlet assembly also includes a longitudinal profile including the inner and outer ends and a first side and a second side, the first and second sides being on opposite sides of the chamber inlet, wherein a shape of the longitudinal profile comprises at least one of triangular, modified triangular, trapezoidal, modified trapezoidal, rectangular, modified rectangular, rhomboidal, and modified rhomboidal. The chamber inlet assembly also includes cassette including the chamber inlet and configured to set into a side wall of the processing chamber.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: November 24, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Eric Kihara Shono, Vishwas Kumar Pandey, Christopher S. Olsen, Hansel Lo, Agus Sofian Tjandra, Taewan Kim, Tobin Kaufman-Osborn
  • Patent number: 10818510
    Abstract: Implementations described herein generally relate to processes for the fabrication of semiconductor devices in which a self-assembled monolayer (SAM) is used to achieve selective area deposition. Methods described herein relate to alternating SAM molecule and hydroxyl moiety exposure operations which may be utilized to form SAM layers suitable for blocking deposition of subsequently deposited materials.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: October 27, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Tobin Kaufman-Osborn, Keith Tatseun Wong
  • Patent number: 10770292
    Abstract: Methods of depositing a film selectively onto a first material relative to a second material are described. The substrate is pre-cleaned by heating the substrate to a first temperature, cleaning contaminants from the substrate and activating the first surface to promote formation of a self-assembled monolayer (SAM) on the first material. A SAM is formed on the first material by repeated cycles of SAM molecule exposure, heating and reactivation of the first material. A final exposure to the SAM molecules is performed prior to selectively depositing a film on the second material. Apparatus to perform the selective deposition are also described.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: September 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Chang Ke, Lei Zhou, Biao Liu, Cheng Pan, Yuanhong Guo, Liqi Wu, Michael S. Jackson, Ludovic Godet, Tobin Kaufman-Osborn, Erica Chen, Paul F. Ma
  • Publication number: 20200240014
    Abstract: A gas injector for processing a substrate includes a body having an inlet connectable to a gas source that is configured to provide a gas flow in a first direction into the inlet when processing a substrate on a substrate support disposed within a processing volume of a processing chamber, and an a gas injection channel formed in the body. The gas injection channel is in fluid communication with the inlet and configured to deliver the gas flow to an inlet of the processing chamber. The gas injection channel has a first interior surface and a second interior surface that are parallel to a second direction and a third direction. The second and third directions do not intersect a center of the substrate, and are at an angle to the first direction towards a first edge of the substrate support.
    Type: Application
    Filed: January 29, 2020
    Publication date: July 30, 2020
    Inventors: Eric Kihara Shono, Vishwas Kumar Pandey, Christopher S. Olsen, Kartik Shah, Hansel Lo, Tobin Kaufman-Osborn, Rene George, Lara Hawrylchak, Erika Hansen
  • Publication number: 20200199748
    Abstract: The present disclosure generally provides methods of providing at least metastable radical molecular species and/or radical atomic species to a processing volume of a process chamber during an electronic device fabrication process, and apparatus related thereto. In one embodiment, the apparatus is a gas injection assembly disposed between a remote plasma source and a process chamber. The gas injection assembly includes a body, a dielectric liner disposed in the body that defines a gas mixing volume, a first flange to couple the gas injection assembly to a process chamber, and a second flange to couple the gas injection assembly to the remote plasma source. The gas injection assembly further includes one or more gas injection ports formed through the body and the liner.
    Type: Application
    Filed: October 24, 2019
    Publication date: June 25, 2020
    Inventors: Vishwas Kumar PANDEY, Eric Kihara SHONO, Kartik SHAH, Christopher S. OLSEN, Agus Sofian TJANDRA, Tobin KAUFMAN-OSBORN, Taewan KIM, Hansel LO
  • Patent number: 10483097
    Abstract: A method for in-situ dry cleaning of a SiGe semiconductor surface, ex-situ degreases the Ge containing semiconductor surface and removes organic contaminants. The surface is then dosed with HF (aq) or NH4F (g) generated via NH3+NH or NF3 with H2 or H2O to remove oxygen containing contaminants. In-situ dosing of the SiGe surface with atomic H removes carbon containing contaminants.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: November 19, 2019
    Assignee: The Regents of the University of California
    Inventors: Tobin Kaufman-Osborn, Andrew C. Kummel, Kiarash Kiantaj
  • Publication number: 20190316256
    Abstract: Methods of depositing a film selectively onto a first substrate surface relative to a second substrate surface are described. The methods include exposing the substrate surfaces to a blocking compound to selectively form a blocking layer on at least a portion of the first surface over the second surface. The substrate is sequentially exposed to a metal precursor with a kinetic diameter in excess of 21 angstroms and a reactant to selectively form a metal-containing layer on the second surface over the blocking layer or the first surface. The relatively larger metal precursors of some embodiments allow for the use of blocking layers with gaps or voids without the loss of selectivity.
    Type: Application
    Filed: April 12, 2019
    Publication date: October 17, 2019
    Inventors: Bhaskar Jyoti Bhuyan, Mark Saly, David Thompson, Tobin Kaufman-Osborn, Kurt Fredrickson, Thomas Knisley, Liqi Wu
  • Publication number: 20190301009
    Abstract: Embodiments described herein relate to apparatus and methods for processing a substrate. In one embodiment, a cluster tool apparatus is provided having a transfer chamber and a pre-clean chamber, a self-assembled monolayer (SAM) deposition chamber, an atomic layer deposition (ALD) chamber, and a post-processing chamber disposed about the transfer chamber. A substrate may be processed by the cluster tool and transferred between the pre-clean chamber, the SAM deposition chamber, the ALD chamber, and the post-processing chamber. Transfer of the substrate between each of the chambers may be facilitated by the transfer chamber which houses a transfer robot.
    Type: Application
    Filed: June 6, 2019
    Publication date: October 3, 2019
    Inventors: Tobin KAUFMAN-OSBORN, Srinivas D. NEMANI, Ludovic GODET, Qiwei LIANG, Adib KHAN
  • Patent number: 10366878
    Abstract: Methods of depositing a film selectively onto a first substrate surface relative to a second substrate surface are described. The methods include net chemisorption of a self-assembled monolayer on the second surface to prevent deposition of the film on the second surface.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: July 30, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Jessica Sevanne Kachian, Tobin Kaufman-Osborn, David Thompson
  • Publication number: 20190228942
    Abstract: In one example, a chamber inlet assembly includes a chamber inlet, an outer coupling for a delivery line, and an inner coupling for a processing region of a processing chamber. The inner coupling and the outer coupling are on inner and outer ends, respectively, of the chamber inlet, wherein a cross-sectional area of the inner coupling is larger than a cross-sectional area of the outer coupling. The chamber inlet assembly also includes a longitudinal profile including the inner and outer ends and a first side and a second side, the first and second sides being on opposite sides of the chamber inlet, wherein a shape of the longitudinal profile comprises at least one of triangular, modified triangular, trapezoidal, modified trapezoidal, rectangular, modified rectangular, rhomboidal, and modified rhomboidal. The chamber inlet assembly also includes cassette including the chamber inlet and configured to set into a side wall of the processing chamber.
    Type: Application
    Filed: January 15, 2019
    Publication date: July 25, 2019
    Inventors: Eric Kihara SHONO, Vishwas Kumar PANDEY, Christopher S. OLSEN, Hansel LO, Agus Sofian TJANDRA, Taewan KIM, Tobin KAUFMAN-OSBORN
  • Patent number: 10358715
    Abstract: Embodiments described herein relate to apparatus and methods for processing a substrate. In one embodiment, a cluster tool apparatus is provided having a transfer chamber and a pre-clean chamber, a self-assembled monolayer (SAM) deposition chamber, an atomic layer deposition (ALD) chamber, and a post-processing chamber disposed about the transfer chamber. A substrate may be processed by the cluster tool and transferred between the pre-clean chamber, the SAM deposition chamber, the ALD chamber, and the post-processing chamber. Transfer of the substrate between each of the chambers may be facilitated by the transfer chamber which houses a transfer robot.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: July 23, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Tobin Kaufman-Osborn, Srinivas D. Nemani, Ludovic Godet, Qiwei Liang, Adib Khan
  • Publication number: 20190157101
    Abstract: Implementations described herein generally relate to processes for the fabrication of semiconductor devices in which a self-assembled monolayer (SAM) is used to achieve selective area deposition. Methods described herein relate to alternating SAM molecule and hydroxyl moiety exposure operations which may be utilized to form SAM layers suitable for blocking deposition of subsequently deposited materials.
    Type: Application
    Filed: January 28, 2019
    Publication date: May 23, 2019
    Inventors: Tobin KAUFMAN-OSBORN, Keith Tatseun WONG
  • Publication number: 20190119813
    Abstract: A method and apparatus for delivering gases to a semiconductor processing system are provided. In some embodiments, the apparatus includes a gas inlet line having an inlet valve; a gas outlet line having an outlet valve; a gas flow controller arranged to control the flow through the inlet valve; an orifice contained within at least one of the gas outlet line, the outlet valve, a chemical ampoule outlet valve, or outlet isolation valve; a chemical ampoule fluidly coupled to at least one of the gas inlet line and the gas outlet line; and a processing chamber. In some embodiments, the apparatus further includes a check valve, one or more orifices, and/or a heated divert line.
    Type: Application
    Filed: September 10, 2018
    Publication date: April 25, 2019
    Inventors: Adib KHAN, Qiwei LIANG, Srinivas D. NEMANI, Tobin KAUFMAN-OSBORN
  • Patent number: D924825
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: July 13, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Eric Kihara Shono, Vishwas Kumar Pandey, Christopher S. Olsen, Hansel Lo, Agus Sofian Tjandra, Taewan Kim, Tobin Kaufman-Osborn