Patents by Inventor Todd A. Ebert

Todd A. Ebert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10830146
    Abstract: A cooling system configured to cool aspects of the turbine engine between a compressor and a turbine assembly is disclosed. In at least one embodiment, the cooling system may include one or more mid-frame cooling channels extending from an inlet through one or more mid-frame torque discs positioned downstream of the compressor and upstream of the turbine assembly. The inlet may be positioned to receive compressor bleed air. The mid-frame cooling channel may be positioned in a radially outer portion of the mid-frame torque disc to provide cooling to outer aspects of the mid-frame torque disc such that conventional, low cost materials may be used to form the mid-frame torque disc rather than high cost materials with capacity to withstand higher temperatures. The cooling fluid routed through the mid-frame cooling channel in the mid-frame torque disc may be exhausted into a cooling system (10) for the downstream turbine assembly.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: November 10, 2020
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Yan Yin, Robert W. Sunshine, Kok-Mun Tham, Todd A. Ebert, Kevin M. Light, Ernie B. Campbell
  • Publication number: 20190010871
    Abstract: A cooling system configured to cool aspects of the turbine engine between a compressor and a turbine assembly is disclosed. In at least one embodiment, the cooling system may include one or more mid-frame cooling channels extending from an inlet through one or more mid-frame torque discs positioned downstream of the compressor and upstream of the turbine assembly. The inlet may be positioned to receive compressor bleed air. The mid-frame cooling channel may be positioned in a radially outer portion of the mid-frame torque disc to provide cooling to outer aspects of the mid-frame torque disc such that conventional, low cost materials may be used to form the mid-frame torque disc rather than high cost materials with capacity to withstand higher temperatures. The cooling fluid routed through the mid-frame cooling channel in the mid-frame torque disc may be exhausted into a cooling system (10) for the downstream turbine assembly.
    Type: Application
    Filed: March 1, 2016
    Publication date: January 10, 2019
    Inventors: Yan Yin, Robert W. Sunshine, Kok-Mun Tham, Todd A. Ebert, Kevin M. Light, Ernie B. Campbell
  • Patent number: 9593590
    Abstract: An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears In at least one embodiment, the metering device may include an annular ring having at least one metering orifice extending therethrough, whereby alignment of the metering orifice with the outlet may be adjustable to change a cross-sectional area of an opening of aligned portions of the outlet and the metering orifice.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: March 14, 2017
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Todd A. Ebert, Keith D. Kimmel
  • Patent number: 9540945
    Abstract: An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears. In at least one embodiment, the metering device may include a valve formed from one or more pins movable between open and closed positions in which the one pin at least partially bisects the bypass channel to regulate flow.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: January 10, 2017
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Todd A. Ebert, Keith D. Kimmel
  • Patent number: 9500094
    Abstract: A floating brush seal in a rim cavity of a turbine in a gas turbine engine, where the floating brush seal includes a seal holder in which the floating brush seal floats, and a expandable seal that fits within two radial extending seal slots that maintains a seal with radial displacement of the floating brush seal and the seal holder.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: November 22, 2016
    Assignee: S & J DEISGN, LLC
    Inventors: Darryl S Eng, Todd A Ebert
  • Patent number: 9416674
    Abstract: A floating air riding seal for a gas turbine engine with a rotor and a stator, an annular piston chamber with an axial moveable annular piston assembly within the annular piston chamber formed in the stator, an annular cavity formed on the annular piston assembly that faces a seal surface on the rotor, where the axial moveable annular piston includes an inlet scoop on a side opposite to the annular cavity that scoops up the swirling cooling air and directs the cooling air to the annular cavity to form an air cushion with the seal surface of the rotor.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: August 16, 2016
    Assignee: S&J DESIGN LLC
    Inventor: Todd A Ebert
  • Patent number: 9394826
    Abstract: The present invention is an industrial gas turbine engine with a circulating fluidized bed cooling system to provide cooling to certain parts of the engine such as a transition duct or a stator vane. The circulating fluidized bed cooling system can be used to cool a stator vane, a casing, or any stationary part of the engine. A circulating fluidized bed cooling system uses very fine particles that pass along with a cooling fluid such as cooling air and provide for a much higher heat transfer coefficient than does turbulent flow cooling air because of the particles. The fine particles produce conduction cooling from the hot surface to the particles that are then carried along in the circulating fluid flow to another location where the heat picked up by the particles is then transferred out from the particles.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 19, 2016
    Assignee: S & J DESIGN LLC
    Inventor: Todd A Ebert
  • Publication number: 20160017741
    Abstract: A gas turbine engine having a rotor with blades and a stationary vane, a platform seal is formed between the blade and vane for inhibiting ingestion of hot gas from a hot gas flow through the turbine into turbine wheel spaces, the platform seal including axial extending platforms on the blade and vane, and radial extending fingers extending from the platforms and forming restrictions between the fingers and the platforms, and a buffer cavity formed between the restrictions, where the fingers are so arranged in a generally radial direction that the vane can be removed from the turbine engine in a radial direction without having to remove the blades first. In additional embodiments, the platform seal assembly can have two or three buffer cavities formed between additional restrictions.
    Type: Application
    Filed: March 31, 2015
    Publication date: January 21, 2016
    Inventor: Todd A. Ebert
  • Publication number: 20140248133
    Abstract: An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 4, 2014
    Applicant: Siemens Energy, Inc.
    Inventors: Todd A. Ebert, Keith D. Kimmel
  • Publication number: 20140248132
    Abstract: An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears. In at least one embodiment, the metering device may include a valve formed from one or more pins movable between open and closed positions in which the one pin at least partially bisects the bypass channel to regulate flow.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 4, 2014
    Applicant: Siemens Energy, Inc.
    Inventors: Todd A. Ebert, Keith D. Kimmel
  • Patent number: 8677766
    Abstract: A gas turbine engine comprises a pre-swirl structure coupled to a shaft cover structure and located radially between a supply of cooling fluid and a flow path. The pre-swirl structure defines a flow passage and includes a plurality of swirl members in the flow passage. A flow direction of cooling fluid passing through the flow passage is altered by the swirl members such that the cooling fluid has a velocity component in a direction tangential to the circumferential direction. The bypass passages provide cooling fluid into a turbine rim cavity associated with a first row vane assembly to prevent hot gas ingestion into the turbine rim cavity from a hot gas flow path associated with a turbine section of the engine.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: March 25, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: Vincent P. Laurello, Keith D. Kimmel, Todd Ebert
  • Patent number: 8613199
    Abstract: A gas turbine engine includes a supply of cooling fluid, a rotatable shaft, structure defining at least one bypass passage in fluid communication with the supply of cooling fluid for supplying cooling fluid from the supply of cooling fluid, and metering structure located at an outlet of the at least one bypass passage. The metering structure includes at least one flow passageway extending therethrough at an angle to a central axis of the engine for permitting cooling fluid in the bypass passage to pass into a turbine rim cavity. The cooling fluid flowing out of the flow passageway has a velocity component in a direction tangential to the circumferential direction in the same direction as a rotation direction of the shaft.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: December 24, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: Keith D. Kimmel, Vincent P. Laurello, Todd Ebert
  • Patent number: 8584469
    Abstract: A gas turbine engine includes a pre-swirl structure. Inner and outer wall structures of the pre-swirl structure define a flow passage in which swirl members are located. The swirl members include a leading edge and a circumferentially offset trailing edge. Cooling fluid exits the flow passage with a velocity component in a direction tangential to the circumferential direction, wherein a swirl ratio defined as the velocity component in the direction tangential to the circumferential direction of the cooling fluid to a velocity component of a rotating shaft in the direction tangential to the circumferential direction is greater than one as the cooling fluid exits the flow passage outlet, and the swirl ratio is about one as the cooling fluid enters at least one bore formed in a blade disc structure. An annular cavity extends between the flow passage and the at least one bore formed in the blade disc structure.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: November 19, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: Vincent P. Laurello, Keith D. Kimmel, Todd Ebert
  • Patent number: 8578720
    Abstract: A gas turbine engine includes a supply of cooling fluid, a rotatable shaft, blade disc structure coupled to the shaft and having at least one bore for receiving cooling fluid, and a particle separator. The particle separator includes particle deflecting structure upstream from the blade disc structure, and a particle collection chamber. The particle deflecting structure deflects solid particles from the cooling fluid prior to the cooling fluid entering the at least one bore in the blade disc structure. The particle collection chamber is upstream from the particle deflecting structure and receives the solid particles deflected from the cooling fluid by the particle deflecting structure. The solid particles deflected by the particle deflecting structure flow upstream from the particle deflecting structure to the particle collection chamber.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: November 12, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: Todd Ebert, Keith D. Kimmel, Vincent P. Laurello
  • Patent number: 8376697
    Abstract: A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: February 19, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Wiebe, Brian J. Wessell, Todd Ebert, Alexander Beeck, George Liang, Walter H. Marussich
  • Patent number: 8240986
    Abstract: A turbine inter-stage seal with active clearance control. The inner diameter of the stator vane includes a seal support structure with a plurality of segmented seal supports each movable by an actuator located on the vane outer diameter with a plunger or push rod extending through the hollow portion of the vanes. A segmented seal arrangement, such as segmented brush seals, are secured to the underside of the seal support segments and form a complete annular seal for the inter-stage between adjacent rotor disks. A proximity probe or microwave sensor detects the brush seal clearance, and a controller regulates the brush seal clearance.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: August 14, 2012
    Assignee: Florida Turbine Technologies, Inc.
    Inventor: Todd A. Ebert
  • Patent number: 8133014
    Abstract: A triple acting radial seal used as an interstage seal assembly in a gas turbine engine, where the seal assembly includes an interstage seal support extending from a stationary inner shroud of a vane ring, the interstage seal support includes a larger annular radial inward facing groove in which an outer annular floating seal assembly is secured for radial displacement, and the outer annular floating seal assembly includes a smaller annular radial inward facing groove in which an inner annular floating seal assembly is secured also for radial displacement. A compliant seal is secured to the inner annular floating seal assembly. The outer annular floating seal assembly encapsulates the inner annular floating seal assembly which is made from a very low alpha material in order to reduce thermal stress.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: March 13, 2012
    Assignee: Florida Turbine Technologies, Inc.
    Inventors: Todd A Ebert, John A Carella
  • Publication number: 20110247346
    Abstract: A gas turbine engine includes a supply of cooling fluid, a rotatable shaft, structure defining at least one bypass passage in fluid communication with the supply of cooling fluid for supplying cooling fluid from the supply of cooling fluid, and metering structure located at an outlet of the at least one bypass passage. The metering structure includes at least one flow passageway extending therethrough at an angle to a central axis of the engine for permitting cooling fluid in the bypass passage to pass into a turbine rim cavity. The cooling fluid flowing out of the flow passageway has a velocity component in a direction tangential to the circumferential direction in the same direction as a rotation direction of the shaft.
    Type: Application
    Filed: April 12, 2010
    Publication date: October 13, 2011
    Inventors: Keith D. Kimmel, Vincent P. Laurello, Todd Ebert
  • Publication number: 20110250057
    Abstract: A gas turbine engine comprises a pre-swirl structure coupled to a shaft cover structure and located radially between a supply of cooling fluid and a flow path. The pre-swirl structure defines a flow passage and includes a plurality of swirl members in the flow passage. A flow direction of cooling fluid passing through the flow passage is altered by the swirl members such that the cooling fluid has a velocity component in a direction tangential to the circumferential direction. The bypass passages provide cooling fluid into a turbine rim cavity associated with a first row vane assembly to prevent hot gas ingestion into the turbine rim cavity from a hot gas flow path associated with a turbine section of the engine.
    Type: Application
    Filed: August 20, 2010
    Publication date: October 13, 2011
    Inventors: Vincent P. Laurello, Keith D. Kimmel, Todd Ebert
  • Publication number: 20110247347
    Abstract: A gas turbine engine includes a supply of cooling fluid, a rotatable shaft, blade disc structure coupled to the shaft and having at least one bore for receiving cooling fluid, and a particle separator. The particle separator includes particle deflecting structure upstream from the blade disc structure, and a particle collection chamber. The particle deflecting structure deflects solid particles from the cooling fluid prior to the cooling fluid entering the at least one bore in the blade disc structure. The particle collection chamber is upstream from the particle deflecting structure and receives the solid particles deflected from the cooling fluid by the particle deflecting structure. The solid particles deflected by the particle deflecting structure flow upstream from the particle deflecting structure to the particle collection chamber.
    Type: Application
    Filed: April 12, 2010
    Publication date: October 13, 2011
    Inventors: Todd Ebert, Keith D. Kimmel, Vincent P. Laurello