Patents by Inventor Todd A. Werpy

Todd A. Werpy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10196333
    Abstract: A process is described for improving the performance of certain multiphase reaction systems including a solid catalyst, one or more reactants in the gas phase and one or more reactants in the liquid phase, wherein a targeted maximum concentration of a reactant in the liquid phase is identified for providing improved value in terms of byproduct formation, catalyst deactivation and yields of desired products, and this targeted concentration is closely approached and preferably achieved, but not substantially exceeded, downstream in a continuous process or later in time from the initiation of a batch in a semibatch mode of operation of such processes.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: February 5, 2019
    Assignee: Archer Daniels Midland Company
    Inventors: Carlos Gustavo Dassori, Chi-Cheng Ma, Todd Werpy
  • Patent number: 9938215
    Abstract: An improved process for making bioderived propylene glycol from a feed composition including at least one of lactic acid, glycerol, a five carbon sugar, a five carbon sugar alcohol, a six carbon sugar and a six carbon sugar alcohol, wherein production of four carbon and higher diols is reduced by adding base after the initiation of the reaction. In preferred embodiments, the process pH and other process conditions are initially established at targeted values for obtaining the highest conversion for a given catalyst consistent with the production of substantially no pentanediol byproducts in the product mixture, and base is added thereafter to control the process pH proximate to the initially targeted value.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: April 10, 2018
    Assignee: Archer Daniels Midland Company
    Inventors: Chi-Cheng Ma, Todd Werpy
  • Publication number: 20170036975
    Abstract: An improved process for making bioderived propylene glycol from a feed composition including at least one of lactic acid, glycerol, a five carbon sugar, a five carbon sugar alcohol, a six carbon sugar and a six carbon sugar alcohol, wherein production of four carbon and higher diols is reduced by adding base after the initiation of the reaction. In preferred embodiments, the process pH and other process conditions are initially established at targeted values for obtaining the highest conversion for a given catalyst consistent with the production of substantially no pentanediol byproducts in the product mixture, and base is added thereafter to control the process pH proximate to the initially targeted value.
    Type: Application
    Filed: April 9, 2015
    Publication date: February 9, 2017
    Inventors: Chi-Cheng Ma, Todd Werpy
  • Publication number: 20170029353
    Abstract: Disclosed herein are methods for forming ammonium salts of C4 diacids in a fermentation process with simultaneous removal of divalent metal carbonate salts. The pH of fermentation broths obtained during the production of fumaric, maleic, malic, and/or succinic acid by a microorganism is controlled by using alkaline oxygen containing calcium or magnesium compounds in the hydroxide, oxide, carbonate or bicarbonate forms—forming divalent metal salts of the diacids that are partially or wholly insoluble in the broth. The calcium or magnesium salts of the diacids are substituted with ammonium by introduction of ammonium salts at elevated temperature and pressure dissolving precipitated divalent metal cation salts of the diacids and forming soluble ammonium salts thereof. Carbonate in the form of CO2 or bicarbonate is simultaneously added to the fermentation media at the elevated temperature and pressure.
    Type: Application
    Filed: September 28, 2016
    Publication date: February 2, 2017
    Inventors: ChiCheng Ma, Todd Werpy
  • Publication number: 20150251980
    Abstract: A process is described for improving the performance of certain multiphase reaction systems including a solid catalyst, one or more reactants in the gas phase and one or more reactants in the liquid phase, wherein a targeted maximum concentration of a reactant in the liquid phase is identified for providing improved value in terms of byproduct formation, catalyst deactivation and yields of desired products, and this targeted concentration is closely approached and preferably achieved, but not substantially exceeded, downstream in a continuous process or later in time from the initiation of a batch in a semibatch mode of operation of such processes.
    Type: Application
    Filed: May 12, 2015
    Publication date: September 10, 2015
    Inventors: Carlos Gustavo Dassori, Chi-Cheng Ma, Todd Werpy
  • Publication number: 20140162326
    Abstract: Methods for forming ammonium salts of C4 diacids in a fermentation process with removal of divalent metal carbonate salts are disclosed. The pH of fermentation broths for production of C4 diacids is controlled by adding alkaline oxygen containing calcium or magnesium compounds, which forms divalent metal salts of the diacids. The divalent metal salts of the diacids are substituted with ammonium by introduction of ammonium salts at elevated temperature and pressure forming soluble ammonium salts thereof. C02 or bicarbonate is simultaneously added to the fennentation media at the elevated temperature and pressure. Reducing the temperature and pressure forms insoluble divalent metal carbonate salts that are separated from the solubilized ammonium diacid salts.
    Type: Application
    Filed: July 9, 2012
    Publication date: June 12, 2014
    Inventors: ChiCheng Ma, Todd Werpy
  • Publication number: 20140127767
    Abstract: Methods for forming ammonium salts of C4 diacids in a fermentation process with removal of divalent metal carbonate salts are disclosed. The pH of fermentation broths for production of C4 diacids is controlled by adding alkaline oxygen containing calcium or magnesium compounds, which forms divalent metal salts of the diacids. The divalent metal salts of the diacids are substituted with ammonium by introduction of ammonium salts at elevated temperature and pressure forming soluble ammonium salts thereof. C02 or bicarbonate is simultaneously added to the fermentation media at the elevated temperature and pressure. Reducing the temperature and pressure forms insoluble divalent metal carbonate salts that are separated from the solubilized ammonium diacid salts. The recovered carbonate salts can be recycled as pH control materials in subsequent fermentations.
    Type: Application
    Filed: July 9, 2012
    Publication date: May 8, 2014
    Inventors: ChiCheng Ma, Todd Werpy
  • Patent number: 8501963
    Abstract: The invention includes methods of processing an initial di-carbonyl compound by conversion to a cyclic compound. The cyclic compound is reacted with an alkylating agent to form a derivative having an alkylated ring nitrogen. The invention encompasses a method of producing an N-alkyl product. Ammonia content of a solution is adjusted to produce a ratio of ammonia to di-carboxylate compound of from about 1:1 to about 1.5:1. An alkylating agent is added and the initial compound is alkylated and cyclized. The invention includes methods of making N-methyl pyrrolidinone (NMP). Aqueous ammonia and succinate is introduced into a vessel and ammonia is adjusted to provide a ratio of ammonia to succinate of less than 2:1. A methylating agent is reacted with succinate at a temperature of from greater than 100° C. to about 400° C. to produce N-methyl succinimide which is purified and hydrogenated to form NMP.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: August 6, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Todd A. Werpy, John G. Frye, Jr., James F. White, Johnathan E. Holladay, Alan H. Zacher
  • Publication number: 20110306780
    Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.
    Type: Application
    Filed: June 30, 2011
    Publication date: December 15, 2011
    Inventors: Michael A. Lilga, Richard T. Hallen, Todd A. Werpy, James F. White, Johnathan E. Holladay, John G. Frye, JR., Alan H. Zacher
  • Publication number: 20110263874
    Abstract: The invention includes methods of processing an initial di-carbonyl compound by conversion to a cyclic compound. The cyclic compound is reacted with an alkylating agent to form a derivative having an alkylated ring nitrogen. The invention encompasses a method of producing an N-alkyl product. Ammonia content of a solution is adjusted to produce a ratio of ammonia to di-carboxylate compound of from about 1:1 to about 1.5:1. An alkylating agent is added and the initial compound is alkylated and cyclized. The invention includes methods of making N-methyl pyrrolidinone (NMP). Aqueous ammonia and succinate is introduced into a vessel and ammonia is adjusted to provide a ratio of ammonia to succinate of less than 2:1. A methylating agent is reacted with succinate at a temperature of from greater than 100° C. to about 400° C. to produce N-methyl succinimide which is purified and hydrogenated to form NMP.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Inventors: Todd A. Werpy, John G. Frye, JR., James F. White, Johnathan E. Holladay, Alan H. Zacher
  • Publication number: 20110257419
    Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 20, 2011
    Inventors: Michael A. Lilga, Richard T. Hallen, Todd A. Werpy, James F. White, Johnathan E. Holladay, John G. Frye, JR., Alan H. Zacher
  • Patent number: 7994347
    Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: August 9, 2011
    Assignee: Battelle Memorial Institute
    Inventors: Michael A. Lilga, Richard T. Hallen, Todd A. Werpy, James F. White, Johnathan E. Holladay, John G. Frye, Jr., Alan H. Zacher
  • Patent number: 7973177
    Abstract: The invention includes methods of processing an initial di-carbonyl compound by conversion to a cyclic compound. The cyclic compound is reacted with an alkylating agent to form a derivative having an alkylated ring nitrogen. The invention encompasses a method of producing an N-alkyl product. Ammonia content of a solution is adjusted to produce a ratio of ammonia to di-carboxylate compound of from about 1:1 to about 1.5:1. An alkylating agent is added and the initial compound is alkylated and cyclized. The invention includes methods of making N-methylpyrrolidinone (NMP). Aqueous ammonia and succinate is introduced into a vessel and ammonia is adjusted to provide a ratio of ammonia to succinate of less than 2:1. A methylating agent is reacted with succinate at a temperature of from greater than 100° C. to about 400° C. to produce N-methyl succinimide which is purified and hydrogenated to form NMP.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: July 5, 2011
    Assignee: Battelle Memorial Institute
    Inventors: Todd A. Werpy, John G. Frye, Jr., James F. White, Johnathan E. Holladay, Alan H. Zacher
  • Patent number: 7872159
    Abstract: Chemical production processes are provided that can include exposing a reactant composition to a catalyst composition to form a product composition. Catalyst compositions are also provided that can include metal phosphate compositions, metal phosphorous compositions, and/or solid support compositions with the solid support compositions including one or more of F—Al2O3, ZrO2—CO2, SiO2—Al2O3—CO2, SiO2 Al2O3, Alundum, and Silica such as Ludox AS-30.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: January 18, 2011
    Assignee: Battelle Memorial Institute
    Inventors: Thomas H. Peterson, Alan H. Zacher, Michel J. Gray, James F. White, Todd A. Werpy
  • Patent number: 7872158
    Abstract: Chemical production processes are provided that can include exposing a reactant composition to a catalyst composition to form a product composition. The reactant composition can include a multihydric alcohol compound and the product composition can include a carbonyl compound. The catalyst composition can include a metal effective to facilitate catalyst activation. Processes disclosed also include supplementing a dehydration catalyst with a promoter, and activating the supplemented catalyst in the presence of oxygen. Processes also include providing a supplemented dehydration catalyst to within a reactor, and exposing a multihydric alcohol compound to the dehydration catalyst, with the exposing forming coke within the reactor. Oxygen can be provided to the reactor to remove at least a portion of the coke.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: January 18, 2011
    Assignee: Battelle Memorial Institute
    Inventors: Thomas H. Peterson, Alan H. Zacher, Michel J. Gray, James F. White, Todd A. Werpy
  • Patent number: 7776782
    Abstract: A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: August 17, 2010
    Assignee: Battelle Memorial Institute
    Inventors: Todd Werpy, John G. Frye, Jr., Yong Wang, Alan H. Zacher
  • Publication number: 20100145072
    Abstract: The invention includes methods of processing an initial di-carbonyl compound by conversion to a cyclic compound. The cyclic compound is reacted with an alkylating agent to form a derivative having an alkylated ring nitrogen. The invention encompasses a method of producing an N-alkyl product. Ammonia content of a solution is adjusted to produce a ratio of ammonia to di-carboxylate compound of from about 1:1 to about 1.5:1. An alkylating agent is added and the initial compound is alkylated and cyclized. The invention includes methods of making N-methylpyrrolidinone (NMP). Aqueous ammonia and succinate is introduced into a vessel and ammonia is adjusted to provide a ratio of ammonia to succinate of less than 2:1. A methylating agent is reacted with succinate at a temperature of from greater than 100° C. to about 400° C. to produce N-methyl succinimide which is purified and hydrogenated to form NMP.
    Type: Application
    Filed: February 9, 2010
    Publication date: June 10, 2010
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Todd A. Werpy, John G. Frye, JR., James F. White, Johnathan E. Holladay, Alan H. Zacher
  • Patent number: 7674916
    Abstract: The invention includes methods of processing an initial di-carbonyl compound by conversion to a cyclic compound. The cyclic compound is reacted with an alkylating agent to form a derivative having an alkylated ring nitrogen. The invention encompasses a method of producing an N-alkyl product. Ammonia content of a solution is adjusted to produce a ratio of ammonia to di-carboxylate compound of from about 1:1 to about 1.5:1. An alkylating agent is added and the initial compound is alkylated and cyclized. The invention includes methods of making N-methyl pyrrolidinone (NMP). Aqueous ammonia and succinate is introduced into a vessel and ammonia is adjusted to provide a ratio of ammonia to succinate of less than 2:1. A methylating agent is reacted with succinate at a temperature of from greater than 100° C. to about 400° C. to produce N-methyl succinimide which is purified and hydrogenated to form NMP.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: March 9, 2010
    Assignee: Battelle Memorial Institute
    Inventors: Todd A. Werpy, John G. Frey, Jr., James F. White, Johnathan E. Holladay, Alan H. Zacher
  • Patent number: 7652131
    Abstract: The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: January 26, 2010
    Assignee: Battelle Memorial Institute
    Inventors: Todd A. Werpy, Andrew J. Schmidt, John G. Frye, Jr., Alan H. Zacher, James A. Franz, Mikhail S. Alnajjar, Gary G. Neuenschwander, Eric V. Alderson, Rick J. Orth, Charles A. Abbas, Kyle E. Beery, Anne M. Rammelsberg, Catherine J. Kim
  • Patent number: 7649099
    Abstract: The invention includes methods of producing dianhydrosugars. A polyol is reacted in the presence of a first catalyst to form a monocyclic sugar. The monocyclic sugar is transferred to a second reactor where it is converted to a dianhydrosugar alcohol in the presence of a second catalyst. The invention includes a process of forming isosorbide. An initial reaction is conducted at a first temperature in the presence of a solid acid catalyst. The initial reaction involves reacting sorbitol to produce 1,4-sorbitan, 3,6-sorbitan, 2,5-mannitan and 2,5-iditan. Utilizing a second temperature, the 1,4-sorbitan and 3,6-sorbitan are converted to isosorbide. The invention includes a method of purifying isosorbide from a mixture containing isosorbide and at least one additional component. A first distillation removes a first portion of the isosorbide from the mixture. A second distillation is then conducted at a higher temperature to remove a second portion of isosorbide from the mixture.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: January 19, 2010
    Assignee: Battelle Memorial Institute
    Inventors: Johnathan E. Holladay, Jianli Hu, Yong Wang, Todd A. Werpy, Xinjie Zhang