Patents by Inventor Todd B. Niemann

Todd B. Niemann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180065692
    Abstract: Undercarriage assembly components of track-type machines having a metallurgically bonded wear-resistant coating and methods for forming such coated undercarriage assembly components is disclosed herein. The bodies of the undercarriage assembly components, formed of an iron-based alloy, have a hard metal alloy slurry disposed on a surface or into an undercut or channel and then fused to form a metallurgical bond with the iron-based alloy. The wear-resistant coating comprises a fused, metal alloy comprising at least 60% iron, cobalt, nickel, or alloys thereof. The portion of the outer surface of the undercarriage assembly components having the wear-resistant coating corresponds to a wear surface of the component during operation of the endless track of the track-type vehicle.
    Type: Application
    Filed: September 5, 2017
    Publication date: March 8, 2018
    Applicant: DEERE & COMPANY
    Inventors: Timothy D. WODRICH, Todd B. NIEMANN, Gopal S. REVANKAR
  • Patent number: 8684475
    Abstract: Undercarriage assembly components of track-type machines having a metallurgically bonded wear-resistant coating and methods for forming such coated undercarriage assembly components is taught herein. The bodies of the undercarriage assembly components, formed of an iron-based alloy, have a hard metal alloy slurry disposed on a surface or into an undercut or channel and then fused to form a metallurgical bond with the iron-based alloy. The wear-resistant coating comprises a fused, metal alloy comprising at least 60% iron, cobalt, nickel, or alloys thereof. The portion of the outer surface of the undercarriage assembly components having the wear-resistant coating corresponds to a wear surface of the component during operation of the endless track of the track-type vehicle.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: April 1, 2014
    Assignee: Deere & Company
    Inventors: Timothy D. Wodrich, Todd B. Niemann, Gopal S. Revankar
  • Publication number: 20140070603
    Abstract: Undercarriage assembly components of track-type machines having a metallurgically bonded wear-resistant coating and methods for forming such coated undercarriage assembly components is taught herein. The bodies of the undercarriage assembly components, formed of an iron-based alloy, have a hard metal alloy slurry disposed on a surface or into an undercut or channel and then fused to form a metallurgical bond with the iron-based alloy. The wear-resistant coating comprises a fused, metal alloy comprising at least 60% iron, cobalt, nickel, or alloys thereof. The portion of the outer surface of the undercarriage assembly components having the wear-resistant coating corresponds to a wear surface of the component during operation of the endless track of the track-type vehicle.
    Type: Application
    Filed: November 12, 2013
    Publication date: March 13, 2014
    Applicant: DEERE & COMPANY
    Inventors: Timothy D. WODRICH, Todd B. Niemann, Gopal S. Revankar
  • Patent number: 7163754
    Abstract: A sprocket has a base steel member including an outer toothed profile surface, at least a portion of the outer toothed profile surface having a wear and corrosion resistant coating disposed thereon; the coating comprising an alloy, the alloy comprising at least 60 weight % iron, cobalt, nickel, or alloys thereof. A method of producing a wear and corrosion resistant sprocket includes: (i) machining a base steel member to form an outer toothed profile surface thereon; (ii) applying a coating to at least a portion of the surface; and (iii) fusing the coating to the base steel member.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: January 16, 2007
    Assignee: Deere & Company
    Inventors: Gopal S. Revankar, Timothy D. Wodrich, Todd B. Niemann
  • Patent number: 6948784
    Abstract: A track pin bushing for cooperating with a track pin in an endless track has a tubular body with a metallurgically bonded wear-resistant coating and a method for forming such a coated track pin bushing is taught herein. The tubular body, formed of an iron-based alloy, has an outer surface that is carburized and quenched, i.e., case-hardened, in at least a section thereof. At least a portion of the case hardened section has been removed to a depth sufficient to expose a non-carburized layer of the iron-based alloy. A hard metal alloy slurry is disposed on the non-carburized layer and forms a metallurgical bond between the non-carburized layer and the coated unfused slurry by fusing the hard metal alloy. The thickness of the unfused slurry is adjusted to be from 1.67 to 2.0 times a final thickness of the wear-resistant coating. The wear-resistant coating comprises a fused, metal alloy comprising at least 60% iron, cobalt, nickel, or alloys thereof.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: September 27, 2005
    Assignee: Deere & Company
    Inventors: Timothy D. Wodrich, Todd B. Niemann, Gopal S. Revankar
  • Publication number: 20030168912
    Abstract: A track pin bushing for cooperating with a track pin in an endless track has a tubular body with a metallurgically bonded wear-resistant coating and a method for forming such a coated track pin bushing is taught herein. The tubular body, formed of an iron-based alloy, has an outer surface that is carburized and quenched, i.e., case-hardened, in at least a section thereof. At least a portion of the case hardened section has been removed to a depth sufficient to expose a non-carburized layer of the iron-based alloy. A hard metal alloy slurry is disposed on the non-carburized layer and forms a metallurgical bond between the non-carburized layer and the coated unfused slurry by fusing the hard metal alloy. The thickness of the unfused slurry is adjusted to be from 1.67 to 2.0 times a final thickness of the wear-resistant coating. The wear-resistant coating comprises a fused, metal alloy comprising at least 60% iron, cobalt, nickel, or alloys thereof.
    Type: Application
    Filed: March 6, 2002
    Publication date: September 11, 2003
    Inventors: Timothy D. Wodrich, Todd B. Niemann, Gopal S. Revankar