Patents by Inventor Todd Bandhauer
Todd Bandhauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240392701Abstract: An ultra-efficient turbo-compression cooling system links an organic Rankine power cycle and a vapor compression cooling cycle using a turbine and compressor that shares a single shaft and further linked to an evaporative condenser. The power cycle implements a waste heat exchanger configured to evaporate a working fluid and a turbine configured to receive the evaporated working fluid. The turbine has a plurality of vanes disposed around a central shaft and configured to rotate as the working fluid expands to a lower pressure within the turbine. An evaporative condenser then condenses the working fluid to a saturated liquid and a mechanical pump pumps the saturated liquid to reenter the waste heat waste heat exchanger.Type: ApplicationFiled: September 22, 2022Publication date: November 28, 2024Inventors: Todd Bandhauer, Nickolas Roberts
-
Patent number: 11962129Abstract: The present disclosure relates to a laser diode system. The system may have at least one laser diode emitter having a substrate, at least one laser diode supported on the substrate, and a facet which a laser beam generated by the laser diode is emitted. A cooling subsystem is included which is disposed in contact with the substrate of the laser diode emitter. The cooling subsystem includes a plurality of cooling fins forming a plurality of elongated channels for circulating a cooling fluid therethrough to cool the laser diode emitter. The cooling fluid also flows over the facet of the laser diode emitter.Type: GrantFiled: April 9, 2021Date of Patent: April 16, 2024Assignees: Lawrence Livermore National Security, LLC, Colorado State University Research FoundationInventors: Jack Kotovsky, Salmaan H. Baxamusa, Clint D. Frye, Ian Seth Ladner, Thomas M. Spinka, Devin Joseph Funaro, David Ryan Hobby, Caleb Del Anderson, Todd Bandhauer
-
Patent number: 11786883Abstract: A highly adsorptive structure includes: a substrate; and a metal-organic framework (MOF) comprising a plurality of metal atoms coordinated to a plurality of organic spacer molecules; wherein the MOF is coupled to at least one surface of the substrate, wherein the MOF is configured to adsorb and desorb a refrigerant under predetermined thermodynamic conditions. The refrigerant includes one or more materials selected from the group consisting of: acid halides, alcohols, aldehydes, amines, chlorofluorocarbons, esters, ethers, fluorocarbons, perfluorocarbons, halocarbons, halogenated aldehydes, halogenated amines, halogenated hydrocarbons, halomethanes, hydrocarbons, hydrochlorofluorocarbons, hydrofluoroethers, hydrofluoroolefins, inorganic gases, ketones, nitrocarbon compounds, noble gases, organochlorine compounds, organofluorine compounds, organophosphorous compounds, organosilicon compounds, oxide gases, refrigerant blends and thiols.Type: GrantFiled: March 11, 2021Date of Patent: October 17, 2023Assignee: Lawrence Livermore National Security, LLCInventors: Theodore F. Baumann, Joe H. Satcher, Jr., Joseph C. Farmer, Todd Bandhauer
-
Publication number: 20220329048Abstract: The present disclosure relates to a laser diode system. The system may have at least one laser diode emitter having a substrate, at least one laser diode supported on the substrate, and a facet which a laser beam generated by the laser diode is emitted. A cooling subsystem is included which is disposed in contact with the substrate of the laser diode emitter. The cooling subsystem includes a plurality of cooling fins forming a plurality of elongated channels for circulating a cooling fluid therethrough to cool the laser diode emitter. The cooling fluid also flows over the facet of the laser diode emitter.Type: ApplicationFiled: April 9, 2021Publication date: October 13, 2022Inventors: Jack KOTOVSKY, Salmaan H. BAXAMUSA, Clint D. FRYE, Ian Seth LADNER, Thomas M. SPINKA, Devin Joseph FUNARO, David Ryan HOBBY, Caleb Del ANDERSON, Todd BANDHAUER
-
Patent number: 11145880Abstract: A hybrid stationary power generator is provided. The system is fueled from natural gas and based on SOFCs and high efficiency, internal combustion (IC) engine technologies is conceived to generate electric power at 100-kW scale with an efficiency of 71% and a capital cost of <900 $/kW. This novel system integrates a solid oxide fuel cell (SOFC) stack with a high efficiency stationary engine and balance-of-plant (BOP) equipment to create a hybrid power system.Type: GrantFiled: December 26, 2018Date of Patent: October 12, 2021Assignees: Colorado School of Mines, Colorado State University Research FoundatonInventors: Robert Braun, Todd Bandhauer, Daniel Olsen, Bret Windom
-
Publication number: 20210299633Abstract: A highly adsorptive structure includes: a substrate; and a metal-organic framework (MOF) comprising a plurality of metal atoms coordinated to a plurality of organic spacer molecules; wherein the MOF is coupled to at least one surface of the substrate, wherein the MOF is configured to adsorb and desorb a refrigerant under predetermined thermodynamic conditions. The refrigerant includes one or more materials selected from the group consisting of: acid halides, alcohols, aldehydes, amines, chlorofluorocarbons, esters, ethers, fluorocarbons, perfluorocarbons, halocarbons, halogenated aldehydes, halogenated amines, halogenated hydrocarbons, halomethanes, hydrocarbons, hydrochlorofluorocarbons, hydrofluoroethers, hydrofluoroolefins, inorganic gases, ketones, nitrocarbon compounds, noble gases, organochlorine compounds, organofluorine compounds, organophosphorous compounds, organosilicon compounds, oxide gases, refrigerant blends and thiols.Type: ApplicationFiled: March 11, 2021Publication date: September 30, 2021Inventors: Theodore F. Baumann, Joe H. Satcher, Jr., Joseph C. Farmer, Todd Bandhauer
-
Patent number: 11000823Abstract: A highly adsorptive structure includes: a substrate; and a carbon aerogel adhered to the substrate, wherein the carbon aerogel is characterized by having physical characteristics of in-situ formation on the substrate, and wherein the carbon aerogel is configured to selectively adsorb and desorb one or more refrigerants selected from the group consisting of: acid halides, alcohols, aldehydes, amines, chlorofluorocarbons, esters, ethers, fluorocarbons, perfluorocarbons, halocarbons, halogenated aldehydes, halogenated amines, halogenated hydrocarbons, halomethanes, hydrocarbons, hydrochlorofluorocarbons, hydrofluoroethers, hydrofluoroolefins, inorganic gases, ketones, nitrocarbon compounds, noble gases, organochlorine compounds, organofluorine compounds, organophosphorous compounds, organosilicon compounds, oxide gases, refrigerant blends and thiols.Type: GrantFiled: March 15, 2013Date of Patent: May 11, 2021Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLCInventors: Theodore F. Baumann, Joe H. Satcher, Jr., Joseph C. Farmer, Todd Bandhauer
-
Patent number: 10994258Abstract: A highly adsorptive structure, includes: a substrate; and a metal-organic framework (MOF) comprising a plurality of metal atoms coordinated to a plurality of organic spacer molecules; wherein the MOF is coupled to at least one surface of the substrate, wherein the MOF is adapted for adsorbing and desorbing a refrigerant under predetermined thermodynamic conditions. The refrigerant includes one or more materials selected from the group consisting of: acid halides, alcohols, aldehydes, amines, chlorofluorocarbons, esters, ethers, fluorocarbons, perfluorocarbons, halocarbons, halogenated aldehydes, halogenated amines, halogenated hydrocarbons, halomethanes, hydrocarbons, hydrochlorofluorocarbons, hydrofluoroethers, hydrofluoroolefins, inorganic gases, ketones, nitrocarbon compounds, noble gases, organochlorine compounds, organofluorine compounds, organophosphorous compounds, organosilicon compounds, oxide gases, refrigerant blends and thiols.Type: GrantFiled: March 15, 2013Date of Patent: May 4, 2021Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLCInventors: Theodore F. Baumann, Joe H. Satcher, Jr., Joseph C. Farmer, Todd Bandhauer
-
Patent number: 10128530Abstract: The high thermal conduction resistances of a lithium-ion battery (LIB) severely limit the effectiveness of a conventional external thermal management system (TMS). A method for a new thermal management system for lithium-ion batteries that utilizes a multi-functional electrolyte (MFE) to remove heat locally inside the cell by evaporating a volatile component of the MFE is disclosed. These new electrolyte mixtures comprise a high vapor pressure co-solvent. The characteristics of a previously unstudied high vapor pressure co-solvent HFE-7000 (65 kPa at 25° C.) in an MFE (1 M LiTFSI in 1:1 HFE-7000/EMC), and other possible MFE compositions that can be utilized in a custom electrolyte boiling facility, are disclosed.Type: GrantFiled: April 16, 2018Date of Patent: November 13, 2018Assignee: Colorado State University Research FoundationInventor: Todd Bandhauer
-
Publication number: 20180233774Abstract: The high thermal conduction resistances of a lithium-ion battery (LIB) severely limit the effectiveness of a conventional external thermal management system (TMS). A method for a new thermal management system for lithium-ion batteries that utilizes a multi-functional electrolyte (MFE) to remove heat locally inside the cell by evaporating a volatile component of the MFE is disclosed. These new electrolyte mixtures comprise a high vapor pressure co-solvent. The characteristics of a previously unstudied high vapor pressure co-solvent HFE-7000 (65 kPa at 25° C.) in an MFE (1 M LiTFSI in 1:1 HFE-7000/EMC), and other possible MFE compositions that can be utilized in a custom electrolyte boiling facility, are disclosed.Type: ApplicationFiled: April 16, 2018Publication date: August 16, 2018Applicant: COLORADO STATE UNIVERSITY RESEARCH FOUNDATIONInventor: Todd Bandhauer
-
Patent number: 9947961Abstract: The high thermal conduction resistances of a lithium-ion battery (LIB) severely limit the effectiveness of a conventional external thermal management system (TMS). A method for a new thermal management system for lithium-ion batteries that utilizes a multi-functional electrolyte (MFE) to remove heat locally inside the cell by evaporating a volatile component of the MFE is disclosed. These new electrolyte mixtures comprise a high vapor pressure co-solvent. The characteristics of a previously unstudied high vapor pressure co-solvent HFE-7000 (65 kPa at 25° C.) in an MFE (1 M LiTFSI in 1:1 HFE-7000/EMC), and other possible MFE compositions that can be utilized in a custom electrolyte boiling facility, are disclosed.Type: GrantFiled: August 3, 2017Date of Patent: April 17, 2018Assignee: Colorado State University Research FoundationInventor: Todd Bandhauer
-
Publication number: 20170346134Abstract: The high thermal conduction resistances of a lithium-ion battery (LIB) severely limit the effectiveness of a conventional external thermal management system (TMS). A method for a new thermal management system for lithium-ion batteries that utilizes a multi-functional electrolyte (MFE) to remove heat locally inside the cell by evaporating a volatile component of the MFE is disclosed. These new electrolyte mixtures comprise a high vapor pressure co-solvent. The characteristics of a previously unstudied high vapor pressure co-solvent HFE-7000 (65 kPa at 25° C.) in an MFE (1 M LiTFSI in 1:1 HFE-7000/EMC), and other possible MFE compositions that can be utilized in a custom electrolyte boiling facility, are disclosed.Type: ApplicationFiled: August 3, 2017Publication date: November 30, 2017Applicant: COLORADO STATE UNIVERSITY RESEARCH FOUNDATIONInventor: Todd BANDHAUER
-
Patent number: 9768584Abstract: A laser diode package includes a heat pipe having a fluid chamber enclosed in part by a heat exchange wall for containing a fluid. Wicking channels in the fluid chamber is adapted to wick a liquid phase of the fluid from a condensing section of the heat pipe to an evaporating section of the heat exchanger, and a laser diode is connected to the heat exchange wall at the evaporating section of the heat exchanger so that heat produced by the laser diode is removed isothermally from the evaporating section to the condensing section by a liquid-to-vapor phase change of the fluid.Type: GrantFiled: March 24, 2016Date of Patent: September 19, 2017Assignee: Lawrence Livermore National Security, LLCInventors: Todd Bandhauer, Robert J. Deri, John W. Elmer, Jack Kotovsky, Susant Patra
-
Publication number: 20160315445Abstract: A laser diode package includes a heat pipe having a fluid chamber enclosed in part by a heat exchange wall for containing a fluid. Wicking channels in the fluid chamber is adapted to wick a liquid phase of the fluid from a condensing section of the heat pipe to an evaporating section of the heat exchanger, and a laser diode is connected to the heat exchange wall at the evaporating section of the heat exchanger so that heat produced by the laser diode is removed isothermally from the evaporating section to the condensing section by a liquid-to-vapor phase change of the fluid.Type: ApplicationFiled: March 24, 2016Publication date: October 27, 2016Inventors: Todd Bandhauer, Robert J. Deri, John W. Elmer, Jack Kotovsky, Susant Patra
-
Patent number: 7520908Abstract: A combustor preheater (94) is provided for use in a fuel processor (20) to preheat a combustor feed (40) by transferring heat from a post water-gas shift reformate flow (32) to the combustor feed (40). The combustor preheater (94) includes a housing (92) defining first and second axially extending, concentric annular passages in heat transfer relation to each other; a first convoluted fin (96) located in the first passage to direct the post water-gas shift reformate flow (32) therethrough and a second convoluted fin (98) located in the second passage to direct the combustor feed therethrough.Type: GrantFiled: February 16, 2005Date of Patent: April 21, 2009Assignee: Modine Manufacturing CompanyInventors: Michael J. Reinke, Jeroen Valensa, Todd Bandhauer, Nicholas Siler, Mark G. Voss, Michael McGregor, Dennis C. Granetzke
-
Patent number: 7520907Abstract: An integrated steam reformer/combustor assembly (42) is provided for use in a fuel processor (20) that supplies a steam/fuel feed mix (34) to be reformed in the assembly and a combustor feed (40) to be combusted in the assembly (42). The assembly (42) includes a housing (44,58) defining first and second axially extending, concentric annular passages in heat transfer relation to each other; a first convoluted fin (46) located in the first passage to direct the feed mix therethrough, the first convoluted fin coated with a catalyst that induces a desired reaction in the feed mix; and a second convoluted fin (50) located in the second passage to direct the combustor feed therethrough, the second convoluted fin coated with a catalyst that induces a desired reaction in the combustor feed.Type: GrantFiled: February 16, 2005Date of Patent: April 21, 2009Assignee: Modine Manufacturing CompanyInventors: Michael J. Reinke, Jeroen Valensa, Todd Bandhauer, Nicholas Siler, Mark G. Voss, Michael McGregor, Dennis C. Granetzke
-
Patent number: 7494518Abstract: A fuel processing system is provided wherein heat is transferred from a reformate flow (32) downstream from a water-gas shift (38) to both a) a combustor feed flow (40) that is supplied to a combustor (25); and b) a water flow (26) that is supplied to a reformer feed mix (34) for a steam reformer (28).Type: GrantFiled: February 16, 2005Date of Patent: February 24, 2009Assignee: Modine Manufacturing CompanyInventors: Michael J. Reinke, Jeroen Valensa, Todd Bandhauer, Nicholas Siler, Mark G. Voss, Michael McGregor, Dennis C. Granetzke
-
Patent number: 7494516Abstract: A recuperative heat exchanger (36) is provided for use in a fuel processor (20), the heat exchanger (36) transferring heat from a fluid flow (34) at one stage of a fuel processing operation to the fluid flow (32) at another stage of the fuel processing operation. The heat exchanger (36) includes a housing (56) defining first and second axially extending, concentric annular passages in heat transfer relation to each other; a first convoluted fin (70) located in the first passage to direct the fluid flow therethrough; and a second convoluted fin (72) located in the second passage to direct the fluid flow therethrough.Type: GrantFiled: February 16, 2005Date of Patent: February 24, 2009Assignee: Modine Manufacturing CompanyInventors: Michael J. Reinke, Jeroen Valensa, Todd Bandhauer, Nicholas Siler, Mark G. Voss, Michael McGregor, Dennis C. Granetzke
-
Publication number: 20080245503Abstract: The present invention provides a heat exchange system for a vehicle. The heat exchange system can include a first heat exchange circuit supported by the vehicle and fluidly connecting a condenser, a compressor, an evaporator, and an expansion device, a module removably secured to the vehicle, the module housing a pump, and a second heat exchange circuit fluidly connecting a liquid-to-air heat exchanger, the pump, and the evaporator. The first exchange circuit can be operable to condition a first passenger space, and the second heat exchange circuit can be operable to condition a second passenger space spaced apart from the first passenger space.Type: ApplicationFiled: April 9, 2008Publication date: October 9, 2008Inventors: Michael J. Wilson, Stephen B. Memory, Jianmin Yin, Jonathan P. Wattelet, Samuel J. Collier, Kevin Traeger, Todd Bandhauer
-
Publication number: 20060251939Abstract: A fuel cell system (1) is provided and includes a fuel cell stack (3), a cathode recuperator heat exchanger (33) adapted to heat an air inlet stream using heat from a fuel cell stack cathode exhaust stream, and an air preheater heat exchanger (39) which is adapted to heat the air inlet stream using heat from a fuel cell stack anode exhaust stream.Type: ApplicationFiled: May 9, 2005Publication date: November 9, 2006Inventors: Todd Bandhauer, Michael Reinke, Jeroen Valensa