Patents by Inventor Todd Duncombe

Todd Duncombe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11738321
    Abstract: Disclosed herein are methods for tracking solutions, (e.g., reaction conditions in solutions). In some embodiments, the method comprises: contacting a first lanthanide-chelator complex to a first solution to generate a first barcoded solution, wherein the first lanthanide-chelator complex comprises a first lanthanide chelated by a first chelator; contacting a second lanthanide-chelator complex to a second solution to generate a second barcoded solution, wherein the second lanthanide-chelator complex comprises a second lanthanide chelated by a second chelator; mixing the first barcoded solution and the second barcoded solution to form one or more mixtures; and identifying the first lanthanide ions in the mass spectrum and the second lanthanide ions in the mass spectrum to track the condition of each of the one or more mixtures.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: August 29, 2023
    Assignees: The Regents of the University of California, National Technology & Engineering Solutions Of Sandia, LLC
    Inventors: Todd Duncombe, Trent R. Northen, Kai Deng, Anup K. Singh
  • Patent number: 9976984
    Abstract: Provided are devices that include a support, a free-standing polymeric separation medium associated with the support and configured to separate a sample along a directional axis, and a sample-loading element associated with the polymeric separation medium. Systems that include the devices, as well as methods of using the devices, are also provided. Embodiments of the present disclosure find use in a variety of different applications, including detecting whether an analyte is present in a fluid sample.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: May 22, 2018
    Assignee: The Regents of the University of California
    Inventors: Amy E. Herr, Todd Duncombe
  • Publication number: 20170348665
    Abstract: Disclosed herein are methods for tracking solutions, (e.g., reaction conditions in solutions). In some embodiments, the method comprises: contacting a first lanthanide-chelator complex to a first solution to generate a first barcoded solution, wherein the first lanthanide-chelator complex comprises a first lanthanide chelated by a first chelator; contacting a second lanthanide-chelator complex to a second solution to generate a second barcoded solution, wherein the second lanthanide-chelator complex comprises a second lanthanide chelated by a second chelator; mixing the first barcoded solution and the second barcoded solution to form one or more mixtures; and identifying the first lanthanide ions in the mass spectrum and the second lanthanide ions in the mass spectrum to track the condition of each of the one or more mixtures.
    Type: Application
    Filed: June 1, 2017
    Publication date: December 7, 2017
    Inventors: Todd Duncombe, Trent R. Northen, Kai Deng, Anup K. Singh
  • Patent number: 9279435
    Abstract: Methods and devices are provided for moving a droplet on an elongated track formed on a patterned surface using vibration. The elongated track includes a plurality of patterned transverse arcuate regions such that when the surface is vibrated the droplet is urged along the track as a result of an imbalance in the adhesion of a front portion of the droplet and a back portion of the droplet to the transverse arcuate regions.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: March 8, 2016
    Assignee: University of Washington through its Center for Communication
    Inventors: Karl F. Bohringer, Todd Duncombe, James Parsons
  • Publication number: 20150001080
    Abstract: Embodiments of an electrophoresis device and methods for using the same in analyte separation applications are provided. Certain embodiments of the present disclosure include microfluidic devices having a single electrophoretic separation channel containing a separation medium. Systems according to embodiments of the present disclosure are configured to monitor analyte fronts moving through the electrophoretic separation channel in order to detect differentially migrating analytes, i.e., the systems are configured for moving boundary electrophoresis (MBE).
    Type: Application
    Filed: February 1, 2013
    Publication date: January 1, 2015
    Inventors: Amy E. Herr, Todd Duncombe
  • Publication number: 20140332383
    Abstract: Provided are devices that include a support, a free-standing polymeric separation medium associated with the support and configured to separate a sample along a directional axis, and a sample-loading element associated with the polymeric separation medium. Systems that include the devices, as well as methods of using the devices, are also provided. Embodiments of the present disclosure find use in a variety of different applications, including detecting whether an analyte is present in a fluid sample.
    Type: Application
    Filed: May 6, 2014
    Publication date: November 13, 2014
    Inventors: Amy E. Herr, Todd Duncombe
  • Publication number: 20140144518
    Abstract: Methods and devices are provided for moving a droplet on an elongated track formed on a patterned surface using vibration. The elongated track includes a plurality of patterned transverse arcuate regions such that when the surface is vibrated the droplet is urged along the track as a result of an imbalance in the adhesion of a front portion of the droplet and a back portion of the droplet to the transverse arcuate regions.
    Type: Application
    Filed: October 23, 2013
    Publication date: May 29, 2014
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Karl F. Bohringer, Todd Duncombe, James Parsons
  • Publication number: 20120318369
    Abstract: Methods and devices for moving a droplet on an elongated track on a textured surface using vibration. The elongated track on the textured surface includes a plurality of transverse arcuate projections such that a droplet on the surface is in the Fakir state and when the surface is vibrated the droplet is urged along the track as a result of an imbalance in the adhesion of a front portion of the droplet and a back portion of the droplet to the textured surface.
    Type: Application
    Filed: January 24, 2012
    Publication date: December 20, 2012
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Karl F. Bohringer, Todd Duncombe, James Parsons