Patents by Inventor Todd Ellis

Todd Ellis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6745499
    Abstract: The present invention relates to a shoe sole having a resilient insert which provides fluidic cushioning and support to the foot of the wearer. The resilient insert has a heel chamber, a forefoot chamber and a passageway, which fluidly connects the heel chamber to the forefoot chamber. As the wearer walks or run and applies impact forces to the shoe sole, fluid within the resilient insert flows back and forth between the heel chamber and the forefoot chamber to provide continuous cushioning and support to the heel and fore portion of the wearer's foot. The resilient insert and components of the sole are specifically constructed and assembled to avoid friction and turbulence therein, which can result in the production of audible and undesirable noises within the interior of the shoe sole.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: June 8, 2004
    Assignee: Reebok International Ltd.
    Inventors: Brian Christensen, Todd Ellis, Paul E. Litchfield
  • Patent number: 6698715
    Abstract: A flow-controlling device is provided for controlling the flow of a fluid. The device comprises a housing, a flow-control element disposed within the housing, at least one seat operably engaging the flow-control element, a biasing device operably engaging each seat for urging the seat into sealing engagement with the flow-control element, and an actuating device operably engaging the flow-control element. The seat operably engages the flow-control element and the biasing device operably engages the seat to urge the seat into a sealing engagement with the flow-control element. The flow-control element, the seat, and the biasing device are comprised of a refractory and/or toughened ceramic material that is fully annealed so that porosity in the material is substantially eliminated and such that the material is substantially homogenous. Components fabricated from such a ceramic are generally heat, corrosion, and wear resistant and are capable of substantial elongation without failure.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: March 2, 2004
    Assignee: University of Alabama
    Inventors: James Edwin Smith, Jr., George O. Ellis, David Todd Ellis
  • Publication number: 20030217484
    Abstract: The present invention relates to a shoe sole having a resilient insert which provides fluidic cushioning and support to the foot of the wearer. The resilient insert has a heel chamber, a forefoot chamber and a passageway, which fluidly connects the heel chamber to the forefoot chamber. As the wearer walks or run and applies impact forces to the shoe sole, fluid within the resilient insert flows back and forth between the heel chamber and the forefoot chamber to provide continuous cushioning and support to the heel and fore portion of the wearer's foot. The resilient insert and components of the sole are specifically constructed and assembled to avoid friction and turbulence therein, which can result in the production of audible and undesirable noises within the interior of the shoe sole.
    Type: Application
    Filed: May 24, 2002
    Publication date: November 27, 2003
    Inventors: Brian Christensen, Todd Ellis, Paul E. Litchfield
  • Patent number: 6460559
    Abstract: A valve for controlling the flow of a fluid comprises a housing, a flow-control element disposed within the housing, at least one seat operably engaging the flow-control element, and a biasing device for urging the seat and the flow-control element relative toward each other. In some embodiments, the valve also includes an actuating device operably engaging the flow-control element. The flow-control element, the seat, and the biasing device are comprised of a refractory material, and at least the biasing device is formed of a toughened refractory or ceramic material that is fully annealed so that porosity in the material is substantially eliminated and such that the material is substantially homogenous. In some embodiments, the seat, the flow-control element, the biasing device, and/or other components may be advantageously fabricated together as a unitary structure. An associated fabrication method is also provided.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: October 8, 2002
    Assignee: University of Alabama in Huntsville
    Inventors: James Edwin Smith, Jr., George O. Ellis, David Todd Ellis
  • Publication number: 20010038084
    Abstract: A valve for controlling the flow of a fluid comprises a housing, a flow-control element disposed within the housing, at least one seat operably engaging the flow-control element, and a biasing device for urging the seat and the flow-control element relative toward each other. In some embodiments, the valve also includes an actuating device operably engaging the flow-control element. The flow-control element, the seat, and the biasing device are comprised of a refractory material, and at least the biasing device is formed of a toughened refractory or ceramic material that is fully annealed so that porosity in the material is substantially eliminated and such that the material is substantially homogenous. In some embodiments, the seat, the flow-control element, the biasing device, and/or other components may be advantageously fabricated together as a unitary structure. An associated fabrication method is also provided.
    Type: Application
    Filed: February 1, 2001
    Publication date: November 8, 2001
    Applicant: University of Alabama
    Inventors: James Edwin Smith, George O. Ellis, David Todd Ellis
  • Publication number: 20010025941
    Abstract: A flow-controlling device is provided for controlling the flow of a fluid. The device comprises a housing, a flow-control element disposed within the housing, at least one seat operably engaging the flow-control element, a biasing device operably engaging each seat for urging the seat into sealing engagement with the flow-control element, and an actuating device operably engaging the flow-control element. The seat operably engages the flow-control element and the biasing device operably engages the seat to urge the seat into a sealing engagement with the flow-control element. The flow-control element, the seat, and the biasing device are comprised of a refractory and/or toughened ceramic material that is fully annealed so that porosity in the material is substantially eliminated and such that the material is substantially homogenous. Components fabricated from such a ceramic are generally heat, corrosion, and wear resistant and are capable of substantial elongation without failure.
    Type: Application
    Filed: December 15, 2000
    Publication date: October 4, 2001
    Applicant: University of Alabama
    Inventors: James Edwin Smith, George O. Ellis, David Todd Ellis