Patents by Inventor Todd K. Whitehurst

Todd K. Whitehurst has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6650943
    Abstract: An implantable stimulator(s) with at least two electrodes, which is small enough to have the electrodes located adjacent to a cavernous nerve(s) or other nerve(s) innervating the reproductive organs, uses a power source/storage device, such as a rechargeable battery. Periodic recharging of such a battery is accomplished, for example, by inductive coupling with an external appliance. The small stimulator provides means of stimulating a nerve(s) when desired, without the need for external appliances during the stimulation session. When necessary, external appliances are used for the transmission of data to and/or from the stimulator(s) and for the transmission of power. In a preferred embodiment, the system is capable of open-and closed-loop operation. In closed-loop operation, at least one implant includes a sensor, and the sensed condition is used to adjust stimulation parameters.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: November 18, 2003
    Assignee: Advanced Bionics Corporation
    Inventors: Todd K. Whitehurst, James P. McGivern
  • Patent number: 6582441
    Abstract: A tool is provided for facilitating determining a proper location for an implantable device or medication, and for then delivering the implant to the precise location determined with the tool. To determine the target location, the tool may include a component for testing target locations, such as a stimulating probe for simulating a miniature implantable stimulator. In one embodiment, the tool is used to test a miniature implantable stimulator prior to depositing the implant precisely at the target location. The components of the tool are configured to maintain the implant at the target location while the tool is withdrawn. In one embodiment, a push rod assembly of the tool keeps the implant in position while it retracts the implant holder from around the implant. The ergonomic and light-weight tool leads to reduced surgical time, number and size of incisions, risk of infection, and likelihood of error.
    Type: Grant
    Filed: January 17, 2001
    Date of Patent: June 24, 2003
    Assignee: Advanced Bionics Corporation
    Inventors: Tom Xiaohai He, James P. McGivern, Todd K. Whitehurst
  • Publication number: 20030083698
    Abstract: Thrombolytic and/or anticoagulation therapy of the present invention includes implantation of the discharge portion(s) of a catheter and, optionally, one or more electrodes on a lead, adjacent tissue(s) to be stimulated. Stimulation pulses, i.e., drug infusion pulses and optional electrical pulses, are supplied by a stimulator implanted remotely, and through the catheter or lead, which is tunneled subcutaneously between the stimulator and stimulation site. Stimulation sites include the coronary arteries, coronary veins, cerebral arteries, other blood vessels, chambers of the heart, mesenteric vessels, deep vessels of the leg, and other locations. Disclosed treatments include drugs used for chronic treatment and/or prevention of thromboembolic disease, for acute treatment of thromboembolic disease, for acute treatment of thrombosis, and combinations of these.
    Type: Application
    Filed: November 1, 2002
    Publication date: May 1, 2003
    Inventors: Todd K. Whitehurst, Kelly H. McClure, James R. Thacker
  • Publication number: 20030036773
    Abstract: Methods and systems for treatment of coronary artery disease (CAD) include implantation of the discharge portion(s) of a catheter and, optionally, electrodes on a lead, near the tissue(s) to be stimulated. Stimulation pulses, i.e., drug infusion pulses and optional electrical pulses, are supplied by a stimulator implanted remotely, and through the catheter or lead, which is tunneled subcutaneously between the stimulator and stimulation site. Stimulation sites include the coronary arteries, the aorta, the left ventricle, the left atrium, and/or the pulmonary veins, among other locations. Disclosed treatments include drugs used for acute treatment of CAD, for chronic treatment of CAD, to promote angiogenesis, and/or as AGE Crosslink Breakers, among other drugs. For instance, the systems and methods reduce or eliminate the incidence of CAD and related morbidities, improve symptoms resulting from CAD, and/or improve cardiac blood flow, cardiac function, and patient quality of life.
    Type: Application
    Filed: August 2, 2002
    Publication date: February 20, 2003
    Inventors: Todd K. Whitehurst, James P. McGivern, Kelly H. McClure, Mark R. Stultz
  • Patent number: 6522928
    Abstract: A Functional Electro Stimulation (FES) system provides physiologically based adjustment of stimulation parameters to achieve a high update rate for nerve and muscle stimulation at a reduced data transmission rate. FES systems generate electrical signals to stimulate nerves and muscles to provide movement for paraplegics and quadriplegics. Known FES systems comprise a multiplicity of microstimulators that are controlled by a single master controller. Control signals are transmitted over an RF link. A complete set of stimulation parameters comprising pulse amplitude, pulse width, and pulse frequency is initially transmitted to set initial stimulation parameters. Subsequent functional control of muscles is achieved by transmitting an increment to a single stimulation parameter. In a preferred embodiment the physiological behavior of the human body is copied by incrementing the pulse rate.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: February 18, 2003
    Assignee: Advanced Bionics Corporation
    Inventors: Todd K. Whitehurst, Kelly H. McClure
  • Publication number: 20020055761
    Abstract: A method and system for treatment of incontinence, urgency, frequency, and/or pelvic pain includes implantation of electrodes on a lead or the discharge portion of a catheter adjacent the perineal nerve(s) or tissue(s) to be stimulated. Stimulation pulses, either electrical or drug infusion pulses, are supplied by a stimulator implanted remotely, and through the lead or catheter, which is tunneled subcutaneously between the stimulator and stimulation site. For instance, the system and method reduce or eliminate the incidence of unintentional episodes of bladder emptying by stimulating nerve pathways that diminish involuntary bladder contractions, improve closure of the bladder outlet, and/or improve the long-term health of the urinary system by increasing bladder capacity and period between emptying.
    Type: Application
    Filed: August 16, 2001
    Publication date: May 9, 2002
    Inventors: Carla M. Mann, Todd K. Whitehurst, James P. McGivern, Gerald E. Loeb, Frances J.R. Richmond
  • Publication number: 20020013612
    Abstract: A system and method for introducing one or more stimulating drugs and/or applying electrical stimulation to the brain to treat mood and/or anxiety disorders uses an implantable system control unit (SCU), specifically an implantable signal/pulse generator (IPG) or microstimulator with two or more electrodes in the case of electrical stimulation, and an implantable pump with one or more catheters in the case of drug infusion. In cases requiring both electrical and drug stimulation, one or more SCUs are used. Alternatively and preferably, when needed, an SCU provides both electrical stimulation and one or more stimulating drugs. In a preferred embodiment, the system is capable of open- and closed-loop operation. In closed-loop operation, at least one SCU includes a sensor, and the sensed condition is used to adjust stimulation parameters.
    Type: Application
    Filed: June 15, 2001
    Publication date: January 31, 2002
    Inventor: Todd K. Whitehurst
  • Publication number: 20010053926
    Abstract: A Functional Electrical Stimulation (FES) system provides frequency division multiplexed transmission of control signals from a master controller to a multiplicity of microstimulators. FES systems utilize the multiplicity of microstimulators to provide electrical signals to stimulate nerves and muscles to provide movement for paraplegics and quadriplegics. Each of the microstimulators are assigned to one of a multiplicity of carrier frequencies for receiving commands from the master controller. When a movement is desired, the microstimulator commands are modulated at the assigned carrier frequency for each microstimulator. The modulated signals for all of the microstimulators are combined into a single main carrier signal which is transmitted over an RF link to all of the microstimulators. Each microstimulator receives the main carrier signal, and filters the main carrier signal to recover the command for the microstimulator.
    Type: Application
    Filed: June 15, 2001
    Publication date: December 20, 2001
    Inventor: Todd K. Whitehurst
  • Publication number: 20010037132
    Abstract: A Functional Electro Stimulation (FES) system provides physiologically based adjustment of stimulation parameters to achieve a high update rate for nerve and muscle stimulation at a reduced data transmission rate. FES systems generate electrical signals to stimulate nerves and muscles to provide movement for paraplegics and quadriplegics. Known FES systems comprise a multiplicity of microstimulators that are controlled by a single master controller. Control signals are transmitted over an RF link. A complete set of stimulation parameters comprising pulse amplitude, pulse width, and pulse frequency is initially transmitted to set initial stimulation parameters. Subsequent functional control of muscles is achieved by transmitting an increment to a single stimulation parameter. In a preferred embodiment the physiological behavior of the human body is copied by incrementing the pulse rate.
    Type: Application
    Filed: March 19, 2001
    Publication date: November 1, 2001
    Inventors: Todd K. Whitehurst, Kelly H. McMlure
  • Patent number: 5065763
    Abstract: An ultrasonic imaging system and method are shown which includes a transducer (10) for pulse insonification of an object (12) and for receiving echo signals from within the object. Echo signals are converted to electrical signals at the transducer (10) and the electrical signals are supplied to a signal processor (28). Processor (28) includes an envelope detector (38) and integrator (40) for integrating the detected output. Echo signals obtained from a first range zone (Z1) at the focal point (F) are processed by processor (28) and supplied to a hold circuit (50) to provide a reflection pixel signal value which is dependent upon reflectivity at the focal point. Echo signals obtained from a second range zone (Z2) opposite the focal point (F) also are processed by processor (28) and supplied to a hold circuit (52) to provide a transmission pixel signal value which is dependent upon attenuation of ultrasonic waves at the focal point (F).
    Type: Grant
    Filed: February 21, 1990
    Date of Patent: November 19, 1991
    Assignee: SRI International
    Inventors: Philip S. Green, John S. Ostrem, Todd K. Whitehurst