Patents by Inventor Todd Louis Harris
Todd Louis Harris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240188860Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.Type: ApplicationFiled: February 20, 2024Publication date: June 13, 2024Inventors: Kate LeeAnn Bechtel, Todd Louis Harris, Edward Gerald Soloman, Winston Sun, Alan Baldwin, Scott E. Coleridge, Mark Lonsinger
-
Publication number: 20240188861Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.Type: ApplicationFiled: February 20, 2024Publication date: June 13, 2024Inventors: Kate LeeAnn Bechtel, Todd Louis Harris, Edward Gerald Solomon, Winston Sun, Alan Baldwin, Scott E. Coleridge, Mark Lonsinger
-
Patent number: 11903704Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.Type: GrantFiled: March 2, 2021Date of Patent: February 20, 2024Assignee: ViOptix, Inc.Inventors: Kate Leeann Bechtel, Todd Louis Harris, Edward Gerald Soloman, Winston Sun, Alan Baldwin, Scott Coleridge, Mark Lonsinger
-
Patent number: 11903703Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.Type: GrantFiled: August 25, 2020Date of Patent: February 20, 2024Assignee: ViOptix, Inc.Inventors: Kate Leeann Bechtel, Todd Louis Harris, Edward Gerald Solomon, Winston Sun, Alan Baldwin, Scott Coleridge, Mark Lonsinger
-
Publication number: 20230000399Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.Type: ApplicationFiled: September 13, 2022Publication date: January 5, 2023Inventors: Kate LeeAnn Bechtel, Todd Louis Harris, Edward Gerald Solomon, Winston Sun, Alan Baldwin, Scott Coleridge, Mark Lonsinger
-
Patent number: 11439330Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.Type: GrantFiled: July 18, 2017Date of Patent: September 13, 2022Assignee: ViOptix, Inc.Inventors: Kate LeeAnn Bechtel, Todd Louis Harris, Edward Gerald Solomon, Winston Sun, Alan Baldwin, Scott Coleridge, Mark Lonsinger
-
Patent number: 11209634Abstract: An optical system includes a splitting optic configured to receive a light beam from a light source and form a set of light bands radiating from the optical system at predetermined angles relative to illuminate a scene. The optical system further includes a lens configured to project a field of view of the scene into a two-dimensional format. The optical system further includes an optical sensor arranged offset from the central axis of the lens to capture a segment of the field of view projected by the lens.Type: GrantFiled: November 16, 2018Date of Patent: December 28, 2021Assignee: ROBERT BOSCH START-UP PLATFORM NORTH AMERICA, LLC, SERIES 1Inventors: Audrey Steever, Nick C. Leindecker, Kaijen Hsiao, Todd Louis Harris, Edward Solomon, Michael Beebe, Sarah Osentoski
-
Patent number: 11112617Abstract: A spreading optics system distributes electromagnetic (EM) waves emitted by an emitter having an emission vector. The spreading optics system includes reflective surfaces. The reflective surfaces include concave first reflector having a concave cross section in a plane substantially perpendicular the emission vector. The reflective surfaces further include a convex second reflector arranged further from the emitter than the concave first reflector. The convex second reflector has a convex cross section in a second plane substantially parallel the first plane. The reflective surfaces are configured to divergently redirect the EM waves into a vector fan at a predetermined angle relative to the emission vector.Type: GrantFiled: November 16, 2018Date of Patent: September 7, 2021Assignee: ROBERT BOSCH START-UP PLATFORM NORTH AMERICA, LLC, SERIES 1Inventors: Todd Louis Harris, William Weber, Audrey Steever
-
Publication number: 20210177312Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.Type: ApplicationFiled: March 2, 2021Publication date: June 17, 2021Inventors: Kate LeeAnn Bechtel, Todd Louis Harris, Edward Gerald Soloman, Winston Sun, Alan Baldwin, Scott Coleridge, Mark Lonsinger
-
Patent number: 10932708Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.Type: GrantFiled: July 17, 2017Date of Patent: March 2, 2021Assignee: ViOptix, Inc.Inventors: Kate LeeAnn Bechtel, Todd Louis Harris, Edward Gerald Solomon, Winston Sun, Alan Baldwin, Scott Coleridge, Mark Lonsinger
-
Publication number: 20200383614Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.Type: ApplicationFiled: August 25, 2020Publication date: December 10, 2020Inventors: Kate LeeAnn Bechtel, Todd Louis Harris, Edward Gerald Solomon, Winston Sun, Alan Baldwin, Scott Coleridge, Mark Lonsinger
-
Patent number: 10750986Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.Type: GrantFiled: July 18, 2017Date of Patent: August 25, 2020Assignee: ViOptix, Inc.Inventors: Kate LeeAnn Bechtel, Todd Louis Harris, Edward Gerald Solomon, Winston Sun, Alan Baldwin, Scott Coleridge, Mark Lonsinger
-
Publication number: 20190374207Abstract: An ingestible device includes a sample chamber configured to hold a sample, the sample chamber including a base having an aperture; a fluorometer separated from the sample chamber by the sample chamber base, the fluorometer including (I) a light source configured to emit excitation light, (II) a light guide configured to guide the excitation light from the light source to the sample, (III) a photodetector configured to detect emission light generated via the interaction of the excitation light with the sample. The photodetector is configured to receive the emission light from the sample through the aperture. Additionally, the fluorometer includes (IV) an emission filter between the aperture and the photodetector, the emission filter configured to (i) transmit the emission light incident thereon, and (ii) block excitation light incident thereon. In addition, the ingestible device includes a housing that houses the sample chamber and the fluorometer.Type: ApplicationFiled: June 6, 2019Publication date: December 12, 2019Inventors: Mitchell Lawrence Jones, Todd Louis Harris, John Paul Bowen, Aaron Olafur Laurence Philippsen, Jeffrey A. Shimizu, Sharat Singh
-
Publication number: 20190154885Abstract: A panoramic annular lens projects a spherical field of view onto a two-dimensional annular format. The panoramic annular lens includes a body, a first refractive surface configured to refract input light rays to obtain first refracted light rays, a first reflective surface configured to reflect the first refracted light rays to obtain first reflected light rays, a second reflective surface configured to reflect the first reflected light rays to obtain second reflected light rays, and a second refractive surface configured to refract the second reflected light rays to obtain output light rays in the two-dimensional annular format. The second refractive surface is externally concave.Type: ApplicationFiled: November 16, 2018Publication date: May 23, 2019Inventors: Audrey Steever, Todd Louis Harris
-
Publication number: 20190155039Abstract: A spreading optics system distributes electromagnetic (EM) waves emitted by an emitter having an emission vector. The spreading optics system includes reflective surfaces. The reflective surfaces include concave first reflector having a concave cross section in a plane substantially perpendicular the emission vector. The reflective surfaces further include a convex second reflector arranged further from the emitter than the concave first reflector. The convex second reflector has a convex cross section in a second plane substantially parallel the first plane. The reflective surfaces are configured to divergently redirect the EM waves into a vector fan at a predetermined angle relative to the emission vector.Type: ApplicationFiled: November 16, 2018Publication date: May 23, 2019Inventors: Todd Louis Harris, William Weber, Audrey Steever
-
Publication number: 20190155007Abstract: An optical system includes a splitting optic configured to receive a light beam from a light source and form a set of light bands radiating from the optical system at predetermined angles relative to illuminate a scene. The optical system further includes a lens configured to project a field of view of the scene into a two-dimensional format. The optical system further includes an optical sensor arranged offset from the central axis of the lens to capture a segment of the field of view projected by the lens.Type: ApplicationFiled: November 16, 2018Publication date: May 23, 2019Inventors: Audrey STEEVER, Nick C. LEINDECKER, Kaijen HSIAO, Todd Louis HARRIS, Edward SOLOMON, Michael BEEBE, Sarah OSENTOSKI
-
Patent number: 10288734Abstract: A sensing method, including: emitting a signal beam; sampling the reflected signal at a sensor with a field of view larger than the signal beam; and determining a surface parameter based on the bright and dark regions associated with the sampled signal.Type: GrantFiled: November 20, 2017Date of Patent: May 14, 2019Assignee: Robert Bosch Start-Up Platform North America, LLC, Series 1Inventors: Audrey Steever, Sarah Osentoski, Kaijen Hsiao, Michael Beebe, Jason John Umhoefer, Karen Marie Ahle, Todd Louis Harris, David L. Klein, Nick C. Leindecker
-
Publication number: 20180239019Abstract: A sensing method, including: emitting a signal beam; sampling the reflected signal at a sensor with a field of view larger than the signal beam; and determining a surface parameter based on the bright and dark regions associated with the sampled signal.Type: ApplicationFiled: April 25, 2018Publication date: August 23, 2018Inventors: Audrey Steever, Sarah Osentoski, Kaijen Hsiao, Michael Beebe, Jason John Umhoefer, Karen Marie Ahle, Todd Louis Harris, David L. Klein, Nick C. Leindecker
-
Publication number: 20180143320Abstract: A sensing method, including: emitting a signal beam; sampling the reflected signal at a sensor with a field of view larger than the signal beam; and determining a surface parameter based on the bright and dark regions associated with the sampled signal.Type: ApplicationFiled: November 20, 2017Publication date: May 24, 2018Inventors: Audrey Steever, Sarah Osentoski, Kaijen Hsiao, Michael Beebe, Jason John Umhoefer, Karen Marie Ahle, Todd Louis Harris, David L. Klein, Nick C. Leindecker
-
Publication number: 20180014760Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.Type: ApplicationFiled: July 18, 2017Publication date: January 18, 2018Inventors: Kate LeeAnn Bechtel, Todd Louis Harris, Edward Gerald Solomon, Winston Sun, Alan Baldwin, Scott Coleridge, Mark Lonsinger