Patents by Inventor Todd Rope

Todd Rope has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170366259
    Abstract: A Pulse Amplitude Modulated (PAM) optical device utilizing multiple wavelengths, features a communications interface having enhanced diagnostics capability. New registers are created to house additional diagnostic information, such as error rates. The diagnostic information may be stored in raw form, or as processed on-chip utilizing local resources.
    Type: Application
    Filed: September 1, 2017
    Publication date: December 21, 2017
    Inventor: Todd ROPE
  • Patent number: 9838134
    Abstract: The present invention relates to telecommunication techniques and integrated circuit (IC) devices. More specifically, embodiments of the present invention provide an off-quadrature modulation system. Once an off-quadrature modulation position is determined, a ratio between DC power transfer amplitude and dither tone amplitude for a modulator is as a control loop target to stabilize off-quadrature modulation. DC power transfer amplitude is obtained by measuring and sampling the output of an optical modulator. Dither tone amplitude is obtained by measuring and sampling the modulator output and performing calculation using the optical modulator output values and corresponding dither tone values. There are other embodiments as well.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: December 5, 2017
    Assignee: INPHI CORPORATION
    Inventors: Todd Rope, Radhakrishnan L. Nagarajan, Hari Shankar
  • Patent number: 9780869
    Abstract: A Pulse Amplitude Modulated (PAM) optical device utilizing multiple wavelengths, features a communications interface having enhanced diagnostics capability. New registers are created to house additional diagnostic information, such as error rates. The diagnostic information may be stored in raw form, or as processed on-chip utilizing local resources.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: October 3, 2017
    Assignee: INPHI CORPORATION
    Inventor: Todd Rope
  • Patent number: 9780881
    Abstract: A Pulse Amplitude Modulated (PAM) optical device utilizing multiple wavelengths, features a communications interface having enhanced diagnostics capability. New registers are created to house additional diagnostic information, such as error rates. The diagnostic information may be stored in raw form, or as processed on-chip utilizing local resources.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: October 3, 2017
    Assignee: INPHI CORPORATION
    Inventors: Todd Rope, Radhakrishnan L. Nagarajan, Jamal Riani, Pulkit Khandelwal
  • Publication number: 20170222717
    Abstract: A Pulse Amplitude Modulated (PAM) optical device utilizing multiple wavelengths, features a communications interface having enhanced diagnostics capability. New registers are created to house additional diagnostic information, such as error rates. The diagnostic information may be stored in raw form, or as processed on-chip utilizing local resources.
    Type: Application
    Filed: April 18, 2017
    Publication date: August 3, 2017
    Inventor: Todd ROPE
  • Publication number: 20170214469
    Abstract: A single chip dual-channel driver for two independent traveling wave modulators. The driver includes two differential pairs inputs per channel respectively configured to receive two digital differential pair signals. The driver further includes a two-bit DAC per channel coupled to the two differential pairs inputs to produce a single analog differential pair PAM signal at a differential pair output for driving a traveling wave modulator. Additionally, the driver includes a control block having internal voltage/current signal generators respective coupled to each input and the 2-bit DAC for providing a bias voltage, a tail current, a dither signal to assist modulation control per channel. Furthermore, the driver includes an internal I2C communication block coupled to a high-speed clock generator to generate control signals to the control block and coupled to host via an I2C digital communication interface.
    Type: Application
    Filed: April 7, 2017
    Publication date: July 27, 2017
    Inventors: Radhakrishnan L. NAGARAJAN, Todd ROPE
  • Patent number: 9660730
    Abstract: A Pulse Amplitude Modulated (PAM) optical device utilizing multiple wavelengths, features a communications interface having enhanced diagnostics capability. New registers are created to house additional diagnostic information, such as error rates. The diagnostic information may be stored in raw form, or as processed on-chip utilizing local resources.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: May 23, 2017
    Assignee: INPHI CORPORATION
    Inventor: Todd Rope
  • Patent number: 9654221
    Abstract: A single chip dual-channel driver for two independent traveling wave modulators. The driver includes two differential pairs inputs per channel respectively configured to receive two digital differential pair signals. The driver further includes a two-bit DAC per channel coupled to the two differential pairs inputs to produce a single analog differential pair PAM signal at a differential pair output for driving a traveling wave modulator. Additionally, the driver includes a control block having internal voltage/current signal generators respective coupled to each input and the 2-bit DAC for providing a bias voltage, a tail current, a dither signal to assist modulation control per channel. Furthermore, the driver includes an internal I2C communication block coupled to a high-speed clock generator to generate control signals to the control block and coupled to host via an I2C digital communication interface.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: May 16, 2017
    Assignee: INPHI CORPORATION
    Inventors: Radhakrishnan L. Nagarajan, Todd Rope
  • Publication number: 20170134095
    Abstract: A single chip dual-channel driver for two independent traveling wave modulators. The driver includes two differential pairs inputs per channel respectively configured to receive two digital differential pair signals. The driver further includes a two-bit DAC per channel coupled to the two differential pairs inputs to produce a single analog differential pair PAM signal at a differential pair output for driving a traveling wave modulator. Additionally, the driver includes a control block having internal voltage/current signal generators respective coupled to each input and the 2-bit DAC for providing a bias voltage, a tail current, a dither signal to assist modulation control per channel. Furthermore, the driver includes an internal I2C communication block coupled to a high-speed clock generator to generate control signals to the control block and coupled to host via an I2C digital communication interface.
    Type: Application
    Filed: January 13, 2017
    Publication date: May 11, 2017
    Inventors: Radhakrishnan L. NAGARAJAN, Todd ROPE
  • Publication number: 20170126313
    Abstract: A system and method for calibrating an optical module. The optical module including a microprocessor with non-volatile memory is provided at a calibration station for measuring calibrated value of a device parameter against raw values starting from minimum value in each of multiple zones of a primary parameter with one or more secondary parameters at least being set to a basis calibration point to determine coefficients for generating a N-spline function for the multiple zones and multiple multipliers for each zone corresponding to multiple calibration points. The coefficients and multiple multipliers are stored in the non-volatile memory and reused respectively for calculating a basis calibrated value based on any current raw value of the primary parameter a N-spline function in particular zone and for determining a final multiplier by interpolation of the multiple multipliers associated with the one or more secondary parameters, leading to a calibrated value for any condition.
    Type: Application
    Filed: January 16, 2017
    Publication date: May 4, 2017
    Inventor: Todd ROPE
  • Patent number: 9634760
    Abstract: A system and method for calibrating an optical module. The optical module including a microprocessor with non-volatile memory is provided at a calibration station for measuring calibrated value of a device parameter against raw values starting from minimum value in each of multiple zones of a primary parameter with one or more secondary parameters at least being set to a basis calibration point to determine coefficients for generating a N-spline function for the multiple zones and multiple multipliers for each zone corresponding to multiple calibration points. The coefficients and multiple multipliers are stored in the non-volatile memory and reused respectively for calculating a basis calibrated value based on any current raw value of the primary parameter a N-spline function in particular zone and for determining a final multiplier by interpolation of the multiple multipliers associated with the one or more secondary parameters, leading to a calibrated value for any condition.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: April 25, 2017
    Assignee: INPHI CORPORATION
    Inventor: Todd Rope
  • Patent number: 9553663
    Abstract: A system and method for calibrating an optical module. The optical module including a microprocessor with non-volatile memory is provided at a calibration station for measuring calibrated value of a device parameter against raw values starting from minimum value in each of multiple zones of a primary parameter with one or more secondary parameters at least being set to a basis calibration point to determine coefficients for generating a N-spline function for the multiple zones and multiple multipliers for each zone corresponding to multiple calibration points. The coefficients and multiple multipliers are stored in the non-volatile memory and reused respectively for calculating a basis calibrated value based on any current raw value of the primary parameter a N-spline function in particular zone and for determining a final multiplier by interpolation of the multiple multipliers associated with the one or more secondary parameters, leading to a calibrated value for any condition.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: January 24, 2017
    Assignee: INPHI CORPORATION
    Inventor: Todd Rope
  • Patent number: 9553673
    Abstract: A single chip dual-channel driver for two independent traveling wave modulators. The driver includes two differential pairs inputs per channel respectively configured to receive two digital differential pair signals. The driver further includes a two-bit DAC per channel coupled to the two differential pairs inputs to produce a single analog differential pair PAM signal at a differential pair output for driving a traveling wave modulator. Additionally, the driver includes a control block having internal voltage/current signal generators respective coupled to each input and the 2-bit DAC for providing a bias voltage, a tail current, a dither signal to assist modulation control per channel. Furthermore, the driver includes an internal I2C communication block coupled to a high-speed clock generator to generate control signals to the control block and coupled to host via an I2C digital communication interface.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: January 24, 2017
    Assignee: INPHI CORPORATION
    Inventors: Radhakrishnan L. Nagarajan, Todd Rope
  • Patent number: 9485027
    Abstract: Methods, algorithms, architectures, circuits, and/or systems for dynamically allocating memory for storing parametric data in optical transceivers are disclosed. The optical transceiver can include an optical receiver configured to receive optical data; an optical transmitter configured to transmit optical data; a microprocessor configured to access data for each of a plurality of parameters that are related to operation of at least one of the optical receiver and the optical transmitter; one or more memories configured to store the data at a plurality of locations that are dynamically allocated by the microprocessor; and an interface configured to receive a request for data for one or more of the parameters from a host and provide the data in response to the request. In the present disclosure, the host is unaware of the locations at which the parametric data are stored.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: November 1, 2016
    Assignee: MAGNOLIA SOURCE (CAYMAN) LIMITED
    Inventor: Todd Rope
  • Patent number: 9391718
    Abstract: Methods, architectures, circuits, and/or systems for monitoring operating parameters and/or generating status indications associated with electronic device operation are disclosed. The method can include (i) monitoring a first operating parameter related to operation of the electronic device to determine a first parameter value, (ii) calculating a difference between the first parameter value and a predetermined value for the first operating parameter, (iii) monitoring a second operating parameter on which thresholds for operational warnings and/or alarms are based to determine a second parameter value, (iv) updating or changing the thresholds based on a predetermined change or event in the second parameter value, (v) comparing the difference to the updated or changed thresholds, and (vi) generating a corresponding one of the operational warnings and/or alarms when the difference crosses at least one of the thresholds in a predetermined direction.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: July 12, 2016
    Assignee: Source Photonics, Inc.
    Inventors: Todd Rope, Mark Heimbuch
  • Patent number: 9251689
    Abstract: Methods, architectures, circuits, and/or systems for tracking variations in the operating parameters of an optical or optoelectronic device are disclosed, as well as use of such variation data to monitor or control device functions and/or generate warnings and/or status flags. A method of tracking a variation in one or more operating parameters in an optical or optoelectronic device may include (i) monitoring one or more operating parameters of the device over time to determine values for each of the operating parameters, (ii) calculating the variation in each of the operating parameters as a function of time, (iii) comparing the variation to one or more predetermined thresholds, each threshold corresponding to an operational warning or alarm, and (iv) generating the operational warning or alarm when the variation exceeds the corresponding threshold.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: February 2, 2016
    Assignee: Source Photonics, Inc.
    Inventors: Yaxi Xiong, Todd Rope, Haifeng Zeng
  • Patent number: 9201103
    Abstract: Methods, circuits, architectures, apparatuses, and algorithms for determining a DC level in an AC or AC-coupled signal. The method generally includes disabling the AC or AC-coupled signal; sampling the disabled AC or AC-coupled signal to obtain sampled DC values of the AC or AC-coupled signal; and calculating the DC level using the sampled DC values of the AC or AC-coupled signal. The present transmitter generally includes an electro-absorption modulated laser (EML); a photodetector; a signal source configured to provide an AC or AC-coupled signal to the EML; and a microcontroller or microprocessor configured to (i) control the signal source, (ii) receive information from the photodetector, and (iii) deactivate the signal source for a predetermined length of time. The circuits, architectures, and apparatuses generally include those that embody one or more of the inventive concepts disclosed herein.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: December 1, 2015
    Assignee: Source Photonics, Inc.
    Inventors: Chris LaBounty, Todd Rope, Tomas J. Ciplickas, Near Margalit
  • Publication number: 20150243155
    Abstract: Methods, architectures, circuits, and/or systems for tracking variations in the operating parameters of an optical or optoelectronic device are disclosed, as well as use of such variation data to monitor or control device functions and/or generate warnings and/or status flags. A method of tracking a variation in one or more operating parameters in an optical or optoelectronic device may include (i) monitoring one or more operating parameters of the device over time to determine values for each of the operating parameters, (ii) calculating the variation in each of the operating parameters as a function of time, (iii) comparing the variation to one or more predetermined thresholds, each threshold corresponding to an operational warning or alarm, and (iv) generating the operational warning or alarm when the variation exceeds the corresponding threshold.
    Type: Application
    Filed: February 27, 2014
    Publication date: August 27, 2015
    Inventors: Yaxi Xiong, Todd Rope, Haifeng Zeng
  • Patent number: 8989587
    Abstract: Methods, algorithms, architectures, circuits, and/or systems for determining the status of parameters associated with optical transceiver operation are disclosed. The method can include (a) accessing and/or monitoring parametric data for each of a plurality of parameters that are related to operation of the optical transceiver; (b) storing the parametric data in one or more memories; (c) comparing the parametric data for each of the plurality of parameters against at least one of a corresponding plurality of predetermined thresholds; and (d) generating one or more states indicating whether the parametric data for a unique one of the parameters has crossed one or more of the corresponding plurality of predetermined thresholds. The invention also relates to an optical triplexer, comprising the described optical transceiver.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: March 24, 2015
    Assignee: Source Photonics, Inc.
    Inventors: Todd Rope, Mark Heimbuch
  • Patent number: 8934779
    Abstract: Methods, architectures, circuits, and/or systems for monitoring operating parameters and/or generating status indications associated with electronic device operation are disclosed. The method can include (i) monitoring a first operating parameter related to operation of the electronic device to determine a first parameter value, (ii) calculating a difference between the first parameter value and a predetermined value for the first operating parameter, (iii) monitoring a second operating parameter on which thresholds for operational warnings and/or alarms are based to determine a second parameter value, (iv) updating or changing the thresholds based on a predetermined change or event in the second parameter value, (v) comparing the difference to the updated or changed thresholds, and (vi) generating a corresponding one of the operational warnings and/or alarms when the difference crosses at least one of the thresholds in a predetermined direction.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: January 13, 2015
    Assignee: Source Photonics, Inc.
    Inventors: Todd Rope, Mark Heimbuch