Patents by Inventor Todd S. Sayler

Todd S. Sayler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9988506
    Abstract: A tetrafluoroethylene (TFE) copolymer film having a first endotherm between about 50° C. and about 300° C., a second endotherm between about 320° C. and about 350° C., and a third endotherm between about 350° C. and about 400° C. is provided. In exemplary embodiments, the third endotherm is approximately 380° C. In some embodiments, the second endotherm is between about 320° C. and about 330° C. or between about 330° C. and about 350° C. TFE copolymer films have a methane permeability less than about 20 ?g*micron/cm2/min. In addition, the dense articles have a void volume of less than about 20%. Methods for dense articles from core shell tetrafluoroethylene copolymers are also provided. The dense articles exhibit improved physical and mechanical properties such as adhesion and barrier properties.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: June 5, 2018
    Assignees: W. L. Gore & Associates, Inc., W. L. Gore & Associates GmbH
    Inventors: Lawrence A. Ford, Michael E. Kennedy, Shaofeng Ran, Todd S. Sayler, Gregory J. Shafer
  • Publication number: 20170210865
    Abstract: A tetrafluoroethylene (TFE) copolymer film having a first endotherm between about 50° C. and about 300° C., a second endotherm between about 320° C. and about 350° C., and a third endotherm between about 350° C. and about 400° C. is provided. In exemplary embodiments, the third endotherm is approximately 380° C. In some embodiments, the second endotherm is between about 320° C. and about 330° C. or between about 330° C. and about 350° C. TFE copolymer films have a methane permeability less than about 20 ?g*micron/cm2/min. In addition, the dense articles have a void volume of less than about 20%. Methods for dense articles from core shell tetrafluoroethylene copolymers are also provided. The dense articles exhibit improved physical and mechanical properties such as adhesion and barrier properties.
    Type: Application
    Filed: April 4, 2017
    Publication date: July 27, 2017
    Inventors: Lawrence A. Ford, Michael E. Kennedy, Shaofeng Ran, Todd S. Sayler, Gregory J. Shafer
  • Patent number: 9663600
    Abstract: A method of fabricating low EW, water insoluble electrolyte materials includes providing a perfluorinated polymer resin that includes perfluorinated carbon-carbon backbone chain and sulfonyl fluoride ended perfluorinated side chains, extending from the perfluorinated backbone chains via an ether linkage, exposing the perfluorinated polymer resin to ammonia gas to convert the sulfonyl fluoride groups to sulfonamide groups, —SO2—NH2, which reacts with sulfonyl fluoride containing chemical agent(s) to form sulfonimide groups, and at the same time, generates low EW, 3-dimensional cross-linked, water-insoluble perfluorinated polymer electrolyte materials.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: May 30, 2017
    Assignees: Audi AG, Toyota Jidosha Kabushiki Kaisha, The Board of Trustees of the University of Alabama
    Inventors: Zhiwei Yang, Mallika Gummalla, Yoichi Hosokawa, Joseph S. Thrasher, Todd S. Sayler, Andrej Matsnev, Richard Edward Fernandez, Alfred Waterfeld
  • Patent number: 9650479
    Abstract: A tetrafluoroethylene (TFE) copolymer film having a first endotherm between about 50° C. and about 300° C., a second endotherm between about 320° C. and about 350° C., and a third endotherm between about 350° C. and about 400° C. is provided. In exemplary embodiments, the third endotherm is approximately 380° C. In some embodiments, the second endotherm is between about 320° C. and about 330° C. or between about 330° C. and about 350° C. TFE copolymer films have a methane permeability less than about 20 ?g*micron/cm2/min. In addition, the dense articles have a void volume of less than about 20%. Methods for dense articles from core shell tetrafluoroethylene copolymers are also provided. The dense articles exhibit improved physical and mechanical properties such as adhesion and barrier properties.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: May 16, 2017
    Assignees: W. L. Gore & Associates, Inc., W. L. Gore & Associates GmbH
    Inventors: Lawrence A. Ford, Michael E. Kennedy, Shaofeng Ran, Todd S. Sayler, Gregory J. Shafer
  • Patent number: 9644054
    Abstract: A dense article that includes a dense TFE copolymer film is provided. The dense TFE copolymer film includes a first endotherm between about 50° C. and about 300° C., a second endotherm between about 320° C. and about 350° C., and a third endotherm between about 350° C. and about 400° C. To form the dense article, a core shell TFE copolymer is formed into a pellet, ram extruded into a tape, dried into a dried preform, and then stretched into a dense TFE copolymer film that exhibits improved physical and mechanical properties. The dense TFE copolymer film is produced directly from the dried preform at a deformation temperature less than about 335° C. and without increasing the porosity of the dried preform, as would conventionally be done in expansion processes. The dense TFE copolymer films have a methane permeability less than about 20 ?g*micron/cm2/min. The dense articles have a void volume less than about 20%.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: May 9, 2017
    Assignees: W. L. Gore & Associates, Inc., W. L. Gore & Associates GmbH
    Inventors: Lawrence A. Ford, Michael E. Kennedy, Shaofeng Ran, Todd S. Sayler, Gregory J. Shafer
  • Publication number: 20160177001
    Abstract: A dense article that includes a dense TFE copolymer film is provided. The dense TFE copolymer film includes a first endotherm between about 50° C. and about 300° C., a second endotherm between about 320° C. and about 350° C., and a third endotherm between about 350° C. and about 400° C. To form the dense article, a core shell TFE copolymer is formed into a pellet, ram extruded into a tape, dried into a dried preform, and then stretched into a dense TFE copolymer film that exhibits improved physical and mechanical properties. The dense TFE copolymer film is produced directly from the dried preform at a deformation temperature less than about 335° C. and without increasing the porosity of the dried preform, as would conventionally be done in expansion processes. The dense TFE copolymer films have a methane permeability less than about 20 ?g*micron/cm2/min. The dense articles have a void volume less than about 20%.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 23, 2016
    Inventors: Lawrence A. Ford, Michael E. Kennedy, Shaofeng Ran, Todd S. Sayler, Gregory J. Shafer
  • Publication number: 20150337064
    Abstract: A method of fabricating low EW, water insoluble electrolyte materials includes providing a perfluorinated polymer resin that includes perfluorinated carbon-carbon backbone chain and sulfonyl fluoride ended perfluorinated side chains, extending from the perfluorinated backbone chains via an ether linkage, exposing the perfluorinated polymer resin to ammonia gas to convert the sulfonyl fluoride groups to sulfonamide groups, —SO2—NH2, which reacts with sulfonyl fluoride containing chemical agent(s) to form sulfonimide groups, and at the same time, generates low EW, 3-dimensional cross-linked, water-insoluble perfluorinated polymer electrolyte materials.
    Type: Application
    Filed: December 21, 2012
    Publication date: November 26, 2015
    Inventors: Zhiwei YANG, Mallika GUMMALLA, Yoichi HOSOKAWA, Joseph S. THRASHER, Todd S. SAYLER, Andrej MATSNEV, Richard Edward FERNANDEZ, Alfred WATERFELD
  • Publication number: 20150111031
    Abstract: A tetrafluoroethylene (TFE) copolymer film having a first endotherm between about 50° C. and about 300° C., a second endotherm between about 320° C. and about 350° C., and a third endotherm between about 350° C. and about 400° C. is provided. In exemplary embodiments, the third endotherm is approximately 380° C. In some embodiments, the second endotherm is between about 320° C. and about 330° C. or between about 330° C. and about 350° C. TFE copolymer films have a methane permeability less than about 20 ?g*micron/cm2/min. In addition, the dense articles have a void volume of less than about 20%. Methods for dense articles from core shell tetrafluoroethylene copolymers are also provided. The dense articles exhibit improved physical and mechanical properties such as adhesion and barrier properties.
    Type: Application
    Filed: December 19, 2014
    Publication date: April 23, 2015
    Inventors: Lawrence A. Ford, Michael E. Kennedy, Shaofeng Ran, Todd S. Sayler, Gregory J. Shafer
  • Publication number: 20130281555
    Abstract: A proton exchange material includes perfluorinated carbon backbone chains and side chains extending off of the perfluorinated carbon backbone chains. The perfluorinated side chains include cross-link chains that have multiple sulfonimide groups, —SO2—NH—SO2—.
    Type: Application
    Filed: January 11, 2011
    Publication date: October 24, 2013
    Applicants: UTC Power Corporation
    Inventors: Zhiwei Yang, Mallika Gummalla, Ned E. Cipollini, Fuqiang Liu, Yoichi Hosokawa, Takumi Taniguchi, Joseph S. Thrasher, Richard Edward Fernandez, Todd S. Sayler, Alfred Waterfeld