Patents by Inventor Todd Sheppard Saunders

Todd Sheppard Saunders has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200375633
    Abstract: The various embodiments described herein provide lateral mass and facet fixation implants, which may be inserted and applied via a posterior approach, using minimally invasive or less invasive techniques. The embodiments described below generally include an intrafacet implant (or “facet implant”) and a lateral mass fixation member attached to or attachable to the facet implant. The lateral mass fixation member can include one or more tabs extending from a middle portion and configured to secure the lateral mass fixation member to lateral masses of adjacent vertebrae. The tabs may be flexible, semi-rigid, or rigid, and may be collapsible to facilitate insertion of the device. Methods for delivering the lateral mass and facet fixation implants are also described.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 3, 2020
    Inventors: Bruce M. McCormack, Edward Liou, Shigeru Tanaka, Christopher U. Phan, Jeffrey D. Smith, Todd Sheppard Saunders, Krzysztof Siemionow
  • Publication number: 20150342648
    Abstract: The various embodiments described herein provide lateral mass and facet fixation implants, which may be inserted and applied via a posterior approach, using minimally invasive or less invasive techniques. The embodiments described below generally include an intrafacet implant (or “facet implant”) and a lateral mass fixation member attached to or attachable to the facet implant. The lateral mass fixation member can include one or more tabs extending from a middle portion and configured to secure the lateral mass fixation member to lateral masses of adjacent vertebrae. The tabs may be flexible, semi-rigid, or rigid, and may be collapsible to facilitate insertion of the device. Methods for delivering the lateral mass and facet fixation implants are also described.
    Type: Application
    Filed: May 27, 2015
    Publication date: December 3, 2015
    Inventors: Bruce M. McCORMACK, Edward LIOU, Shigeru TANAKA, Christopher U. PHAN, Jeffrey D. SMITH, Todd Sheppard SAUNDERS, Krzysztof SIEMIONOW
  • Publication number: 20140358183
    Abstract: Methods, systems, and devices are disclosed for cooling tissue, and in particular for applying therapeutic hypothermia to the spinal canal, tissue disposed within the spinal canal, and nerve roots extending from the spinal canal. Bone screws, intervertebral implants, stabilization rods, spinous process spacers, and other devices are described which define a chamber through which a chilled fluid, expandable gas, or other coolant means can be circulated, delivered, or activated to cool adjacent tissue. The degree of cooling can be regulated using a controller, which can be configured to increase or decrease the cooling effect based on any of a variety of measured or predicted physiological or thermodynamic properties. Methods are disclosed for implanting cooling instruments and for carrying out various treatment regimens that involve cooling tissue using such instruments.
    Type: Application
    Filed: August 2, 2014
    Publication date: December 4, 2014
    Inventors: Todd Sheppard Saunders, Jared Samuel Fry
  • Publication number: 20130281995
    Abstract: Methods, systems, and devices are disclosed for cooling tissue, and in particular for applying therapeutic hypothermia to the spinal canal, tissue disposed within the spinal canal, and nerve roots extending from the spinal canal. Bone screws, intervertebral implants, stabilization rods, spinous process spacers, and other devices are described which define a chamber through which a chilled fluid, expandable gas, or other coolant means can be circulated, delivered, or activated to cool adjacent tissue. The degree of cooling can be regulated using a controller, which can be configured to increase or decrease the cooling effect based on any of a variety of measured or predicted physiological or thermodynamic properties. Methods are disclosed for implanting cooling instruments and for carrying out various treatment regimens that involve cooling tissue using such instruments.
    Type: Application
    Filed: June 14, 2013
    Publication date: October 24, 2013
    Inventors: Todd Sheppard Saunders, Jared Samuel Fry
  • Patent number: 8523930
    Abstract: Methods, systems, and devices are disclosed for cooling tissue, and in particular for applying therapeutic hypothermia to the spinal canal, tissue disposed within the spinal canal, and nerve roots extending from the spinal canal. Bone screws, intervertebral implants, stabilization rods, spinous process spacers, and other devices are described which define a chamber through which a chilled fluid, expandable gas, or other coolant means can be circulated, delivered, or activated to cool adjacent tissue. The degree of cooling can be regulated using a controller, which can be configured to increase or decrease the cooling effect based on any of a variety of measured or predicted physiological or thermodynamic properties. Methods are disclosed for implanting cooling instruments and for carrying out various treatment regimens that involve cooling tissue using such instruments.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: September 3, 2013
    Assignee: Neuraxis, LLC
    Inventors: Todd Sheppard Saunders, Jared Samuel Fry
  • Publication number: 20110282418
    Abstract: Methods, systems, and devices are disclosed for cooling tissue, and in particular for applying therapeutic hypothermia to the spinal canal, tissue disposed within the spinal canal, and nerve roots extending from the spinal canal. Bone screws, intervertebral implants, stabilization rods, spinous process spacers, and other devices are described which define a chamber through which a chilled fluid, expandable gas, or other coolant means can be circulated, delivered, or activated to cool adjacent tissue. The degree of cooling can be regulated using a controller, which can be configured to increase or decrease the cooling effect based on any of a variety of measured or predicted physiological or thermodynamic properties. Methods are disclosed for implanting cooling instruments and for carrying out various treatment regimens that involve cooling tissue using such instruments.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 17, 2011
    Applicant: AMELIOMED, LLC
    Inventors: Todd Sheppard Saunders, Jared Samuel Fry