Patents by Inventor Todor I. Donchev

Todor I. Donchev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120017415
    Abstract: A method for using a reusable sample-holding device for readily loading very small wet samples for observation of the samples by microscopic equipment, in particular in a vacuum environment. The method may be used with a scanning electron microscope (SEM), a transmission electron microscope (TEM), an X-ray microscope, optical microscope, and the like. For observation of the sample, the method provides a thin-membrane window etched in the center of each of two silicon wafers abutting to contain the sample in a small uniform gap formed between the windows. This gap may be adjusted by employing spacers. Alternatively, the thickness of a film established by the fluid in which the sample is incorporated determines the gap without need of a spacer. To optimize resolution each window may have a thickness on the order of 50 nm and the gap may be on the order of 50 nm.
    Type: Application
    Filed: September 22, 2011
    Publication date: January 26, 2012
    Inventors: Charles P. MARSH, Eric OLSON, Todor I. DONCHEV, Ivan PETROV, Jianguo WEN, Ryan FRANKS, Dongxiang LIAO
  • Patent number: 8102523
    Abstract: A method for using a reusable sample-holding device for readily loading very small wet samples for observation of the samples by microscopic equipment, in particular in a vacuum environment. The method may be used with a scanning electron microscope (SEM), a transmission electron microscope (TEM), an X-ray microscope, optical microscope, and the like. For observation of the sample, the method provides a thin-membrane window etched in the center of each of two silicon wafers abutting to contain the sample in a small uniform gap formed between the windows. This gap may be adjusted by employing spacers. Alternatively, the thickness of a film established by the fluid in which the sample is incorporated determines the gap without need of a spacer. To optimize resolution each window may have a thickness on the order of 50 nm and the gap may be on the order of 50 nm.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: January 24, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Charles P. Marsh, Eric Olson, Todor I. Donchev, Ivan Petrov, Jianguo Wen, Ryan Franks, Dongxiang Liao
  • Patent number: 8059271
    Abstract: A reusable sample-holding device for readily loading very small wet samples for observation of the samples by microscopic equipment, in particular in a vacuum environment. Embodiments may be used with a scanning electron microscope (SEM), a transmission electron microscope (TEM), an X-ray microscope, optical microscope, and the like. For observation of the sample, embodiments provide a thin-membrane window etched in the center of each of two silicon wafers abutting to contain the sample in a small uniform gap formed between the windows. This gap may be adjusted by employing spacers. Alternatively, the thickness of a film established by the fluid in which the sample is incorporated determines the gap without need of a spacer. To optimize resolution each window may have a thickness on the order of 50 nm and the gap may be on the order of 50 nm.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: November 15, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Charles P. Marsh, Eric Olson, Todor I. Donchev, Ivan Petrov, Jianguo Wen, Ryan Franks, Dongxiang Liao
  • Patent number: 7951276
    Abstract: Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: May 31, 2011
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Todor I. Donchev, Ivan G. Petrov
  • Patent number: 7884326
    Abstract: A manipulator for use in e.g. a Transmission Electron Microscope (TEM) is described, said manipulator capable of rotating and translating a sample holder (4). The manipulator clasps the round sample holder between two members (3A, 3B), said members mounted on actuators (2A, 2B). Moving the actuators in the same direction results in a translation of the sample holder, while moving the actuators in opposite directions results in a rotation of the sample holder.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: February 8, 2011
    Assignees: FEI Company, The Board of Trustees of the University of Illinois, The Regents of the University of California
    Inventors: Jeroen van de Water, Johannes van den Oetelaar, Raymond Wagner, Hendrik Nicolaas Slingerland, Jan Willem Bruggers, Adriaan Huibert Dirk Ottevanger, Andreas Schmid, Eric A. Olson, Ivan G. Petrov, Todor I. Donchev, Thomas Duden
  • Patent number: 7800063
    Abstract: A manipulator for use in e.g. a Transmission Electron Microscope (TEM) is described, said manipulator capable of rotating and translating a sample holder (4). The manipulator clasps the round sample holder between two members (3A, 3B), said members mounted on actuators (2A, 2B). Moving the actuators in the same direction results in a translation of the sample holder, while moving the actuators in opposite directions results in a rotation of the sample holder.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: September 21, 2010
    Assignees: FEI Company, The Board of Trustees of the University of Illinois, The Regents of the University of California
    Inventors: Jeroen van de Water, Johannes van den Oetelaar, Raymond Wagner, Hendrik Nicolaas Slingerland, Jan Willem Bruggers, Adriaan Huibert Dirk Ottevanger, Andreas Schmid, Eric A. Olson, Ivan G. Petrov, Todor I. Donchev, Thomas Duden
  • Publication number: 20100193398
    Abstract: A reusable sample-holding device for readily loading very small wet samples for observation of the samples by microscopic equipment, in particular in a vacuum environment. Embodiments may be used with a scanning electron microscope (SEM), a transmission electron microscope (TEM), an X-ray microscope, optical microscope, and the like. For observation of the sample, embodiments provide a thin-membrane window etched in the center of each of two silicon wafers abutting to contain the sample in a small uniform gap formed between the windows. This gap may be adjusted by employing spacers. Alternatively, the thickness of a film established by the fluid in which the sample is incorporated determines the gap without need of a spacer. To optimize resolution each window may have a thickness on the order of 50 nm and the gap may be on the order of 50 nm.
    Type: Application
    Filed: February 4, 2009
    Publication date: August 5, 2010
    Inventors: CHARLES P. MARSH, ERIC OLSON, TODOR I. DONCHEV, IVAN PETROV, JIANGUO WEN, RYAN FRANKS, DONGXIANG LIAO
  • Patent number: 7706506
    Abstract: A system for irradiating material used in transfusions. The material can be pre-transfused blood, blood components and marrow. The system includes a vacuum chamber with a plate cathode inside. The cathode has a large beam electrode field-electron emissive surface with a selected cross-sectional shaped area. A power supply is connected to the cathode for generating negative high-voltage pulses and causing a selected cross-sectional shaped beam of electrons to be emitted. An electron window is also disposed inside the vacuum chamber and made of thin metal foil. The electron window receives the selected cross-sectional shaped beam of electrons therethrough and onto an electron target disposed outside the vacuum chamber. The electron target receives the selected cross-sectional shaped beam of electrons thereon and generates a selected cross-sectional shaped X-ray beam. A cathode filter is disposed next to the electron target and eliminates low energy beams from the spectrum of the X-ray beam.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: April 27, 2010
    Assignee: Applied X-Rad Technology, LLC
    Inventors: Ralph R. Woodruff, Stoyan A. Toshkov, Todor I. Donchev
  • Publication number: 20090255802
    Abstract: Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.
    Type: Application
    Filed: June 7, 2007
    Publication date: October 15, 2009
    Inventors: Todor I. Donchev, Ivan G. Petrov
  • Publication number: 20080173813
    Abstract: A manipulator for use in e.g. a Transmission Electron Microscope (TEM) is described, said manipulator capable of rotating and translating a sample holder (4). The manipulator clasps the round sample holder between two members (3A, 3B), said members mounted on actuators (2A, 2B). Moving the actuators in the same direction results in a translation of the sample holder, while moving the actuators in opposite directions results in a rotation of the sample holder.
    Type: Application
    Filed: September 26, 2007
    Publication date: July 24, 2008
    Applicants: FEI COMPANY, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: JEROEN VAN DE WATER, JOHANNES VAN DEN OETELAAR, RAYMOND WAGNER, HENDRIK NICOLAAS SLINGERLAND, ANDREAS SCHMID, IVAN G. PETROV, TODOR I. DONCHEV, ERIC A. OLSON, JAN WILLEM BRUGGERS, ADRIAAN HUIBERT DIRK OTTEVANGER, THOMAS DUDEN