Patents by Inventor Tohru Sonoda

Tohru Sonoda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8895974
    Abstract: In an organic EL display device (100), an insulating layer (113) includes a first insulating film (113a) and a second insulating film (113b) provided thereabove, a plurality of upper electrodes (115c) are each provided to cover a corresponding one of a plurality of organic EL layers (115b), and a reflection film (114) is provided between the first insulating film (113a) and the second insulating film (113b), corresponding to a region N other than the a light emission region. The reflection film (114) reflects toward a sealing substrate (120) a portion of light generated in each organic EL layer (115b) which is diffused into the region N other than the light emission region so that the portion of the light is transmitted through a separation wall portion (116) and the sealing substrate (120) to be viewed as an image on the sealing substrate.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: November 25, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroshi Sugimoto, Tohru Sonoda
  • Patent number: 8882918
    Abstract: A vapor deposition apparatus (50) includes: a mask unit (54) including a vapor deposition source (70), a vapor deposition mask (60), and a mask holding member (80); a substrate holder (52); and at least either a mask unit moving mechanism (55) or a substrate moving mechanism (53), with a roller (83) provided in a surface of one of (A) the substrate holder (52) and (B) the mask holding member (80) which faces the other one of (A) the substrate holder (52) and (B) the mask holding member (80).
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: November 11, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Shinichi Kawato, Satoshi Inoue, Tohru Sonoda
  • Patent number: 8872166
    Abstract: An organic EL device (10) includes: a substrate (11); a planarizing film (12) comprised of an organic resin and provided over the substrate (11) so as to cover a light-emitting region (P) and a non-light-emitting region (N); a first electrode (13) provided on the planarizing film (12) so as to cover at least the light-emitting region (P); an organic layer (14) provided on the first electrode (13) so as to cover at least the light-emitting region (P); and a second electrode (15) provided on the organic layer (14) so as to cover the light-emitting region (P) and the non-light-emitting region (N). A hole (17) is formed in the non-light-emitting region (N) so as to extend from the second electrode (15) to the planarizing film (12), and at least the planarizing film (12) is exposed by an inner wall surface of the hole (17).
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: October 28, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroshi Sugimoto, Tohru Sonoda
  • Patent number: 8859438
    Abstract: A coating film (90) is formed by causing vapor deposition particles (91) to pass through a mask opening (71) of a vapor deposition mask and adhere to a substrate, the vapor deposition particles (91) being discharged from a vapor deposition source opening (61) of a vapor deposition source (60) while the substrate (10) is moved relative to the vapor deposition mask (70) in a state in which the substrate (10) and the vapor deposition mask (70) are spaced apart at a fixed interval. When a direction that is orthogonal to a normal line direction of the substrate and is orthogonal to a relative movement direction of the substrate is defined as a first direction, and the normal line direction of the substrate is defined as a second direction, a plurality of control plate columns are disposed in the first direction between the vapor deposition source opening and the vapor deposition mask, each control plate column including a plurality of control plates (80a and 80b) arranged along the second direction.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: October 14, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tohru Sonoda, Shinichi Kawato, Satoshi Inoue
  • Publication number: 20140299058
    Abstract: A Film (7) is provided on at least a part of a surface of each of a vapor deposition preventing plate (3) and a shutter (4) of a vacuum chamber (5) on which surface vapor deposition particles are vapor-deposited, the film (7) being provided so as to be peeled off from the each of the vapor deposition preventing plate (3) and the shutter (4), and the film being made of a material differing in at least one of a melting point, a sublimation point, solubility in a given solvent, microbial biodegradability, and photodegradability from a material of which a vapor-deposited film that is formed on the film (7) is made.
    Type: Application
    Filed: June 6, 2014
    Publication date: October 9, 2014
    Inventors: Tohru SONODA, Shinichi KAWATO, Satoshi INOUE, Satoshi HASHIMOTO
  • Patent number: 8845808
    Abstract: A vapor deposition device (50) in accordance with the present invention is a vapor deposition device for forming a film on a film formation substrate (60), the vapor deposition device including a vapor deposition source (80) that has an injection hole (81) from which vapor deposition particles are injected, a vapor deposition particle crucible (82) for supplying the vapor deposition particles to the vapor deposition source (80), and a rotation motor (86) for changing a distribution of the injection amount of the vapor deposition particles by rotating the vapor deposition source (80).
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: September 30, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tohru Sonoda, Shinichi Kawato, Satoshi Inoue, Satoshi Hashimoto
  • Patent number: 8841142
    Abstract: A coating film (90) is formed by causing vapor deposition particles (91) discharged from a vapor deposition source opening (61) of a vapor deposition source (60) to pass through a space (82) between a plurality of limiting plates (81) of a limiting plate unit (80) and a mask opening (71) of a vapor deposition mask in this order and adhere to a substrate while the substrate is moved relative to the vapor deposition mask in a state in which the substrate (10) and the vapor deposition mask (70) are spaced apart at a fixed interval. It is determined whether or not it is necessary to correct the position of at least one of the plurality of limiting plates in the X axis direction, and in the case where it is necessary to correct the position, the position of at least one of the plurality of limiting plates in the X axis direction is corrected. Accordingly, a coating film whose edge blur is suppressed can be stably formed at a desired position on a large-sized substrate.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: September 23, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Shinichi Kawato, Satoshi Inoue, Tohru Sonoda
  • Patent number: 8828856
    Abstract: Provided is a TFT substrate (10) on which vapor-deposited sections are to be formed by use of a vapor deposition device (50) which includes a vapor deposition source (85) having injection holes (86); and a vapor deposition mask (81) having opening (82) through which vapor deposition particles are deposited to form the vapor-deposited sections. The TFT substrate (10) includes pixels two-dimensionally arranged in a pixel region (AG); and wires (14) electrically connected to the respective pixels. The vapor-deposited sections (Q) are formed with gaps (X) therebetween, and the wires (14) having respective terminals that are disposed in the gaps (X).
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: September 9, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tohru Sonoda, Shinichi Kawato, Satoshi Inoue, Satoshi Hashimoto
  • Patent number: 8815352
    Abstract: One embodiment of the present invention is a film forming method including the steps of forming an absorption layer 12 over one surface of a first substrate 11; forming a layer 16 containing a high molecular compound over the absorption layer; removing an impurity in the layer containing the high molecular compound by performing a first heat treatment on the layer 16; forming a material layer 18 containing a first film formation material and a second film formation material over the layer 16; performing a second heat treatment to form a mixed layer 19 in which the material layer and the layer 16 are mixed over the absorption layer; and performing third heat treatment to form a layer 19a containing the first film formation material and the second film formation material on a film-formation target surface of a second substrate.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: August 26, 2014
    Assignees: Semiconductor Energy Laboratory Co., Ltd., Sharp Kabushiki Kaisha
    Inventors: Tomoya Aoyama, Hisao Ikeda, Satoshi Inoue, Tohru Sonoda
  • Publication number: 20140206117
    Abstract: An IZO layer (113) is formed on an a-ITO layer (112), and resist patterns (202R, 202G) having different film thicknesses are formed in at least sub-pixels (71R, 71G). The a-ITO layer (112) and the IZO layer (113) are etched by utilizing (i) a reduction in thickness of the resist patterns (202R, 202G) by ashing and (ii) a change in etching tolerance due to transformation from the a-ITO layer (112) into a p-ITO layer (114).
    Type: Application
    Filed: September 20, 2012
    Publication date: July 24, 2014
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Tohru Sonoda, Shoji Okazaki, Hiromitsu Katsui, Tetsunori Tanaka
  • Patent number: 8691016
    Abstract: A deposition mask 601 is used to form a thin film 3 in a prescribed pattern on a substrate 10 by deposition. Each of a plurality of improved openings 62A of the deposition mask 601 has a protruding opening portion 64, and is formed so that the opening amount at an end in a lateral direction is larger than that in a central portion in the lateral direction. In a deposition apparatus 50, the deposition mask 601 is held in a fixed relative positional relation with a deposition source 53 by a mask unit 55. In the case of forming the thin film 3 in a stripe pattern on the substrate 10 by the deposition apparatus 50, deposition particles are sequentially deposited on the substrate 10 while relatively moving the substrate 10 along a scanning direction with a gap H being provided between the substrate 10 and the deposition mask 601.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: April 8, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tohru Sonoda, Nobuhiro Hayashi, Shinichi Kawato
  • Publication number: 20140087450
    Abstract: A Film (7) is provided on at least a part of a surface of each of a vapor deposition preventing plate (3) and a shutter (4) of a vacuum chamber (5) on which surface vapor deposition particles are vapor-deposited, the film (7) being provided so as to be peeled off from the each of the vapor deposition preventing plate (3) and the shutter (4), and the film being made of a material differing in at least one of a melting point, a sublimation point, solubility in a given solvent, microbial biodegradability, and photodegradability from a material of which a vapor-deposited film that is formed on the film (7) is made.
    Type: Application
    Filed: November 26, 2013
    Publication date: March 27, 2014
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Tohru SONODA, Shinichi KAWATO, Satoshi INOUE, Satoshi HASHIMOTO
  • Patent number: 8673077
    Abstract: Vapor deposition particles (91) discharged from at least one vapor deposition source opening (61) pass through a plurality of limiting openings (82) of a limiting unit (80) and a plurality of mask openings (71) of a vapor deposition mask (70), and adhere to a substrate (10) that relatively moves along a second direction (10a) so as to form a coating film. The limiting unit includes a plurality of plate members stacked on one another. Accordingly, it is possible to efficiently form a vapor deposition coating film in which edge blurring is suppressed on a large-sized substrate at a low cost.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: March 18, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tohru Sonoda, Shinichi Kawato, Satoshi Inoue, Satoshi Hashimoto
  • Patent number: 8673082
    Abstract: A crucible (50) of the present invention includes: an opening (55a) from which vapor deposition particles are injected toward a film formation substrate on which a film is to be formed; a focal point member (54a), provided so as to face the opening (55a), which reflects vapor deposition particles injected from the opening (55a); and a revolution paraboloid (55b) which reflects, toward the film formation substrate, vapor deposition particles which have been reflected by the focal point member (54a).
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: March 18, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Satoshi Inoue, Shinichi Kawato, Tohru Sonoda
  • Patent number: 8668157
    Abstract: A layer (71), made from a material that is attracted by a magnet, is formed in at least part of a chamber component (70), which at least part makes in contact with a film forming material. A method for collecting a film forming material includes the steps of: (a) exfoliating an attachment (22) which has attached to a surface of the chamber component (70); and (b) collecting the attachment (22) by separating a fragment of the layer (71), which fragment has been exfoliated in the step (a), while causing the fragment to be attracted by a magnet (202a).
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: March 11, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tohru Sonoda, Shinichi Kawato, Satoshi Inoue, Satoshi Hashimoto
  • Patent number: 8668956
    Abstract: A vapor deposition particle injection device (30) includes a vapor deposition particle generating section (41), at least one nozzle stage made of an intermediate nozzle section (51), a vapor deposition particle emitting nozzle section (61), and heat exchangers (43, 63, 53). The vapor deposition particle emitting nozzle section (61) is controlled so as to be at a temperature lower than a temperature at which a vapor deposition material turns into gas. Meanwhile, the intermediate nozzle section (51) is controlled by the heat exchanger (53) so as to be at a temperature between a temperature of the vapor deposition particle generating section (41) and a temperature of the vapor deposition particle emitting nozzle section (61).
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: March 11, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Satoshi Inoue, Shinichi Kawato, Tohru Sonoda, Satoshi Hashimoto
  • Patent number: 8669192
    Abstract: First and second vapor deposition particles (91a, 91b) discharged from first and second vapor deposition source openings (61a, 61b) pass through first and second limiting openings (82a, 82b) of a limiting plate unit (80), pass through mask opening (71) of a vapor deposition mask (70) and adhere to a substrate (10) so as to form a coating film. If regions on the substrate to which the first vapor deposition particles and the second vapor deposition particles adhere if the vapor deposition mask is assumed not to exist are respectively denoted by a first region (92a) and a second region (92b), the limiting plate unit limits the directionalities of the first vapor deposition particles and the second vapor deposition particles in a first direction (10a) that travel to the substrate such that the second region is contained within the first region. Accordingly, it is possible to form a light emitting layer with a doping method by using vapor deposition by color.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: March 11, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Shinichi Kawato, Satoshi Inoue, Tohru Sonoda
  • Patent number: 8664023
    Abstract: A vapor deposition method of the present invention includes the steps of (i) preparing a mask unit including a shadow mask (81) and a vapor deposition source (85) fixed in position relative to each other, (ii) while moving at least one of the mask unit and the film formation substrate (200) relative to the other, depositing a vapor deposition flow, emitted from the vapor deposition source (85), onto a vapor deposition region (210), and (iii) adjusting the position of a second shutter (111) so that the second shutter (111) blocks a vapor deposition flow traveling toward the vapor deposition unnecessary region (210).
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: March 4, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tohru Sonoda, Shinichi Kawato, Satoshi Inoue, Satoshi Hashimoto
  • Patent number: 8658545
    Abstract: A vapor deposition source (60), a limiting plate unit (80), and a vapor deposition mask (70) are disposed in this order. The limiting plate unit includes a plurality of limiting plates (81) disposed along a first direction. At least a portion of surfaces (83) defining a limiting space (82) of the limiting plate unit and surfaces (84) of the limiting plate unit opposing the vapor deposition source is constituted by at least one outer surface member (110, 120) capable of attaching to and detaching from a base portion (85). Accordingly, a vapor deposition device that is capable of forming a coating film in which edge blur is suppressed on a large-sized substrate and that has excellent maintenance performance can be obtained.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: February 25, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Shinichi Kawato, Satoshi Inoue, Tohru Sonoda
  • Patent number: 8651912
    Abstract: An anode 2 is formed on an element substrate 1. By using a film-forming solution containing a stacking material that forms an organic layer 43, a film is formed on a donor substrate 10 to form a transfer layer 11, thereby fabricating a transfer substrate 12. The transfer substrate 12 and the element substrate 1 are placed so as to face each other with spacers 13 interposed therebetween, such that the surface of the transfer substrate 12, which has the transfer layer 11 formed thereon, faces the element substrate 1 having the anode 2 formed thereon. The transfer substrate 12 and the element substrate 1 facing each other are held under vacuum conditions. The transfer substrate 12 is heated by the heat source 15 under the vacuum conditions to transfer the transfer layer 11 to the element substrate 1.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: February 18, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hideki Uchida, Tokiyoshi Umeda, Tohru Sonoda