Patents by Inventor Toivo T. Kodas

Toivo T. Kodas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100230841
    Abstract: Provided is an aerosol method, and accompanying apparatus, for preparing powdered products of a variety of materials involving the use of an ultrasonic aerosol generator (106) including a plurality of ultrasonic transducers (120) underlying and ultrasonically energizing a reservoir of liquid feed (102) which forms droplets of the aerosol. Carrier gas (104) is delivered to different portions of the reservoir by a plurality of gas delivery ports (136) delivering gas from a gas delivery system. The aerosol is pyrolyzed to form particles, which are then cooled and collected. The invention also provides powders made by the method and devices made using the powders.
    Type: Application
    Filed: December 15, 2009
    Publication date: September 16, 2010
    Applicant: CABOT CORPORATION
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell, Daniel J. Skamser, James Caruso, Clive D. Chandler
  • Patent number: 7749299
    Abstract: A process for the production of metal nanoparticles. The process comprises a rapid mixing of a solution of at least about 0.1 mole of a metal compound that is capable of being reduced to a metal by a polyol with a heated solution of a polyol and a substance that is capable of being adsorbed on the nanoparticles.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: July 6, 2010
    Assignee: Cabot Corporation
    Inventors: Karel Vanheusden, Klaus Kunze, Hyungrak Kiim, Aaron D. Stump, Allen B. Schult, Mark J. Hampden-Smith, Chuck Edwards, Anthony R. James, James Caruso, Toivo T. Kodas, Scott Thomas Haubrich, Mark H. Kowalski
  • Publication number: 20100151267
    Abstract: A powder batch is described comprising single crystal metal-containing particles having a crystal size of less than 50 nm as measured by X-ray diffraction and having a weight average particle size of from about 10 nanometers to less than 100 nanometers as measured by transmission electron microscopy and including a continuous or non-continuous coating of a ceramic material. The powder batch is preferably produced by flame spraying.
    Type: Application
    Filed: June 19, 2007
    Publication date: June 17, 2010
    Applicant: Cabot Corporation
    Inventors: Toivo T. Kodas, Miodrag Oljaca, Mark J. Hampden-Smith, George P. Fotou, Ralph E. Kornbrekke, Jian-Ping Shen
  • Patent number: 7732002
    Abstract: Precursor compositions in the form of a tape that can be transferred to a substrate and converted to an electronic feature at a relatively low temperature, such as not greater than about 200° C. The tape composition can be disposed on a carrier to form a ribbon structure that is flexible and can be handled in a variety of industrial processes.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: June 8, 2010
    Assignee: Cabot Corporation
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron D. Stump, Allen B. Schult, Paolina Atanassova, Klaus Kunze
  • Patent number: 7727630
    Abstract: Nickel powder batches and methods for producing nickel powder batches. The powder batches include particles having a small particle size, narrow size distribution and a spherical morphology. The present invention is also directed to devices incorporating the nickel metal powders.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: June 1, 2010
    Assignee: Cabot Corporation
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, James Caruso, Quint H. Powell, Daniel J. Skamser, Clive D. Chandler
  • Patent number: 7722687
    Abstract: Energy devices such as batteries and methods for fabricating the energy devices. The devices are small, thin and lightweight, yet provide sufficient power for many handheld electronics.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: May 25, 2010
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Paolina Atanassova, Klaus Kunze, Paul Napolitano, David Dericotte, Rimple Bhatia
  • Patent number: 7713899
    Abstract: Compositions and methods for the manufacture of electrodes for fuel cells. The compositions and methods are particularly useful for the manufacture of anodes and cathodes for proton exchange membrane fuel cells, particularly direct methanol fuel cells. The methods can utilize direct-write tools to deposit ink compositions and form functional layers of a membrane electrode assembly having controlled properties and enhanced performance.
    Type: Grant
    Filed: July 3, 2006
    Date of Patent: May 11, 2010
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Paolina Atanassova, Rimple Bhatia, Ross A. Miesem, Paul Napolitano, Gordon L. Rice
  • Publication number: 20100112195
    Abstract: Precursor compositions in the form of a tape that can be transferred to a substrate and converted to an electronic feature at a relatively low temperature, such as not greater than about 200° C. The tape composition can be disposed on a carrier to form a ribbon structure that is flexible and can be handled in a variety of industrial processes.
    Type: Application
    Filed: October 18, 2002
    Publication date: May 6, 2010
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron D. Stump, Allen B. Schult, Paolina Atanassova, Klaus Kunze
  • Patent number: 7691664
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: April 6, 2010
    Assignee: Cabot Corporation
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron D. Stump, Allen B. Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20100034986
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: February 11, 2010
    Applicant: Cabot Corporation
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron D. Stump, Allen B. Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20100021634
    Abstract: Security features, e.g., reflective security features, and processes for forming security features are described. The security features comprise crystalline metal-containing particles having a primary particle size of from about 10 nanometers to less than 500 nanometers and including a continuous or non-continuous coating of a ceramic material. Inks comprising such crystalline metal-containing particles are also described. The crystalline metal-containing particles are preferably produced by flame spraying.
    Type: Application
    Filed: June 19, 2007
    Publication date: January 28, 2010
    Applicant: Cabot Corporation
    Inventors: Toivo T. Kodas, Miodrag Oljaca, Mark J. Hampden-Smith, George P. Fotou, Ralph E. Kornbrekke, Jian-Ping Shen
  • Patent number: 7642213
    Abstract: Compositions and methods for the manufacture of electrodes for fuel cells. The compositions and methods are particularly useful for the manufacture of anodes and cathodes for proton exchange membrane fuel cells, particularly direct methanol fuel cells. The methods can utilize direct-write tools to deposit ink compositions and form functional layers of a membrane electrode assembly having controlled properties and enhanced performance.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: January 5, 2010
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Paolina Atanassova, Rimple Bhatia, Ross A. Miesem, Paul Napolitano, Gordon L. Rice
  • Publication number: 20090325792
    Abstract: A process is described for producing a powder batch comprises a plurality of particles, wherein the particles include (a) a first catalytically active component comprising at least one transition metal or a compound thereof; (b) a second component different from said first component and capable of removing oxygen from, or releasing oxygen to, an exhaust gas stream; and (c) a third component different from said first and second components and comprising a refractory support. The process comprises providing a precursor medium comprising a liquid vehicle and a precursor to al least one of said components (a) to (c) and heating droplets of said precursor medium carried in a gas stream to remove at least part of the liquid vehicle and chemically convert said precursor to said at least one component.
    Type: Application
    Filed: June 27, 2008
    Publication date: December 31, 2009
    Applicant: CABOT CORPORATION
    Inventors: Miodrag Oljaca, Toivo T. Kodas, Ranko P. Bontchev, Klaus Kunze, Kenneth C. Koehlert
  • Patent number: 7631518
    Abstract: Methods for producing glass powders are provided. The methods include generating an aerosol stream comprising droplets that include a liquid and a glass precursor. Glass particles are formed in the aerosol stream having a small average particle size. The powders can also have a small particle size, narrow size distribution, a high density and a spherical morphology. The invention also includes devices and products formed from the glass powders.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: December 15, 2009
    Assignee: Cabot Corporation
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, James Caruso, Quint H. Powell, Audunn Ludviksson
  • Patent number: 7632331
    Abstract: Provided is an aerosol method, and accompanying apparatus, for preparing powdered products of a variety of materials involving the use of an ultrasonic aerosol generator (106) including a plurality of ultrasonic transducers (120) underlying and ultrasonically energizing a reservoir of liquid feed (102) which forms droplets of the aerosol. Carrier gas (104) is delivered to different portions of the reservoir by a plurality of gas delivery ports (136) delivering gas from a gas delivery system. The aerosol is pyrolyzed to form particles, which are then cooled and collected. The invention also provides powders made by the method and devices made using the powders.
    Type: Grant
    Filed: February 19, 2007
    Date of Patent: December 15, 2009
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell, Daniel J. Skamser, James Caruso, Clive D. Chandler
  • Patent number: 7629017
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes copper metal for the formation of highly conductive copper features.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: December 8, 2009
    Assignee: Cabot Corporation
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron D. Stump, Allen B. Schult, Paolina Atanassova, Klaus Kunze
  • Patent number: 7625420
    Abstract: Copper metal powders, methods for producing copper metal powders and products incorporating the powders. The copper metal powders have a small particle size, narrow size distribution and a spherical morphology. The method includes forming the metal particles in a continuous manner.
    Type: Grant
    Filed: February 24, 1998
    Date of Patent: December 1, 2009
    Assignee: Cabot Corporation
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, James Caruso, Daniel J. Skamser, Quint H. Powell, Clive D. Chandler
  • Patent number: 7621976
    Abstract: Provided are silver-containing powders and a method and apparatus for manufacturing the silver-containing particles of high quality, of a small size and narrow size distribution. An aerosol is generated from liquid feed and sent to a furnace, where liquid in droplets in the aerosol is vaporized to permit formation of the desired particles, which are then collected in a particle collector. The aerosol generation involves preparation of a high quality aerosol, with a narrow droplet size distribution, with close control over droplet size and with a high droplet loading suitable for commercial applications.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: November 24, 2009
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell, Daniel J. Skamser, James Caruso, Clive Chandler
  • Patent number: 7597769
    Abstract: Provided are silver-containing powders and a method and apparatus for manufacturing the silver-containing particles of high quality, of a small size and narrow size distribution. An aerosol is generated from liquid feed and sent to a furnace, where liquid in droplets in the aerosol is vaporized to permit formation of the desired particles, which are then collected in a particle collector. The aerosol generation involves preparation of a high quality aerosol, with a narrow droplet size distribution, with close control over droplet size and with a high droplet loading suitable for commercial applications.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: October 6, 2009
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell, Daniel J. Skamser, James Caruso, Clive Chandler
  • Patent number: 7599165
    Abstract: Provided are palladium-containing powders and a method and apparatus for manufacturing the palladium-containing particles of high quality, of a small size and narrow size distribution. An aerosol is generated from liquid feed and sent to a furnace, where liquid in droplets in the aerosol is vaporized to permit formation of the desired particles, which are then collected in a particle collector. The aerosol generation involves preparation of a high quality aerosol, with a narrow droplet size distribution, with close control over droplet size and with a high droplet loading suitable for commercial applications. Powders may have high resistance to oxidation of palladium. Multi-phase particles are provided including a palladium-containing metallic phase and a second phase that is dielectric. Electronic components are provided manufacturable using the powders.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: October 6, 2009
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell, Daniel J. Skamser, James Caruso, Clive D. Chandler