Patents by Inventor Tom C. Lee

Tom C. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160111414
    Abstract: An electrostatic discharge protection circuit is disclosed. A method of manufacturing a semiconductor structure includes forming a semiconductor controlled rectifier including a first plurality of fingers between an n-well body contact and an anode in an n-well, and a second plurality of fingers between a p-well body contact and a cathode in a p-well.
    Type: Application
    Filed: December 22, 2015
    Publication date: April 21, 2016
    Inventors: James P. DI SARRO, Robert J. GAUTHIER, Tom C. LEE, Junjun LI, Souvick MITRA, Christopher S. PUTNAM
  • Patent number: 9287345
    Abstract: Disclosed are methods for forming a thin film resistor and terminal bond pad simultaneously. A method includes simultaneously forming a terminal bond pad on a terminal wire and a thin film resistor on two other wires.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: March 15, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Fen Chen, Jeffrey P. Gambino, Zhong-Xiang He, Tom C. Lee, John C. Malinowski, Anthony K. Stamper
  • Publication number: 20160035717
    Abstract: Structures and methods are provided for nanosecond electrical pulse anneal processes. The method of forming an electrostatic discharge (ESD) N+/P+ structure includes forming an N+ diffusion on a substrate and a P+ diffusion on the substrate. The P+ diffusion is in electrical contact with the N+ diffusion. The method further includes forming a device between the N+ diffusion and the P+ diffusion. A method of annealing a structure or material includes applying an electrical pulse across an electrostatic discharge (ESD) N+/P+ structure for a plurality of nanoseconds.
    Type: Application
    Filed: October 14, 2015
    Publication date: February 4, 2016
    Inventors: Michel J. ABOU-KHALIL, Robert J. GAUTHIER, JR., Tom C. LEE, Junjun LI, Souvick MITRA, Christopher S. PUTNAM, Robert R. ROBISON
  • Publication number: 20160035716
    Abstract: Structures and methods are provided for nanosecond electrical pulse anneal processes. The method of forming an electrostatic discharge (ESD) N+/P+ structure includes forming an N+ diffusion on a substrate and a P+ diffusion on the substrate. The P+ diffusion is in electrical contact with the N+ diffusion. The method further includes forming a device between the N+ diffusion and the P+ diffusion. A method of annealing a structure or material includes applying an electrical pulse across an electrostatic discharge (ESD) N+/P+ structure for a plurality of nanoseconds.
    Type: Application
    Filed: October 14, 2015
    Publication date: February 4, 2016
    Inventors: Michel J. ABOU-KHALIL, Robert J. GAUTHIER, Jr., Tom C. LEE, Junjun LI, Souvick MITRA, Christopher S. PUTNAM, Robert R. ROBISON
  • Patent number: 9240471
    Abstract: An electrostatic discharge protection circuit is disclosed. A method of manufacturing a semiconductor structure includes forming a semiconductor controlled rectifier including a first plurality of fingers between an n-well body contact and an anode in an n-well, and a second plurality of fingers between a p-well body contact and a cathode in a p-well.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: January 19, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam
  • Publication number: 20150348960
    Abstract: Circuits and methods of fabricating circuits that provide electrostatic discharge protection, as well as methods of protecting an integrated circuit from electrostatic discharge. The protection circuit may include a power clamp device, a timing circuit including a resistor and a capacitor that is coupled with the resistor at a node, and a power clamp device coupled with the timing circuit at the node. The capacitor includes a plurality of capacitor elements. The protection circuit further includes a plurality of electronic fuses. Each electronic fuse is coupled with a respective one of the capacitor elements. A field effect transistor may be coupled in parallel with the resistor of the timing circuit, and may be used to bypass the resistor to provide a programming current to any electronic fuse coupled with a capacitor element of abnormally low impedance.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 3, 2015
    Applicant: International Business Machines Corporation
    Inventors: Robert J. Gauthier, JR., Tom C. Lee, Junjun Li, You Li, Souvick Mitra
  • Publication number: 20150288174
    Abstract: Circuits and methods for providing electrostatic discharge protection. The protection circuit may include a power clamp device, a timing circuit including a resistor and a capacitor that is coupled with the resistor at a node, a transmission gate configured to selectively connect the node of the timing circuit with the power clamp device, and a control circuit coupled with the node. The control circuit is configured to control the transmission gate based upon whether or not the capacitor is defective. The timing circuit may be deactivated if the capacitor in the timing circuit is defective and the associated chip is powered. Alternatively, the timing circuit may be activated if the capacitor in the timing circuit is not defective.
    Type: Application
    Filed: April 2, 2014
    Publication date: October 8, 2015
    Applicant: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam
  • Patent number: 9070629
    Abstract: Methods and systems for altering the electrical resistance of a wiring path. The electrical resistance of the wiring path is compared with a target electrical resistance value. If the electrical resistance of the wiring path exceeds the target electrical resistance value, an electrical current is selectively applied to the wiring path to physically alter a portion of the wiring path. The current may be selected to alter the wiring path such that the electrical resistance drops to a value less than or equal to the target electrical resistance value.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: June 30, 2015
    Assignee: International Business Machines Corporation
    Inventors: Michel J. Abou-Khalil, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam
  • Patent number: 9064786
    Abstract: Various embodiments include dual three-dimensional (3D) resistor structures and methods of forming such structures. In some embodiments, a dual 3D resistor structure includes: a dielectric layer having a first set of trenches extending in a first direction through the dielectric layer; and a second set of trenches overlayed on the first set of trenches, the second set of trenches extending in a second direction through the dielectric layer, the second set of trenches and the first set of trenches forming at least one dual 3D trench; and a resistor material overlying the dielectric layer and at least partially filling the at least one dual 3D trench along the first direction and the second direction.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: June 23, 2015
    Assignee: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam
  • Patent number: 9006783
    Abstract: Device structures and design structures that include a silicon controlled rectifier, as well as fabrication methods for such device structures. A well is formed in the device layer of a silicon-on-insulator substrate. A silicon controlled rectifier is formed that includes an anode in the well. A deep trench capacitor is formed that includes a plate coupled with the well. The plate of the deep trench capacitor extends from the device layer through a buried insulator layer of the silicon-on-insulator substrate and into a handle wafer of the silicon-on-insulator substrate.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: April 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Chengwen Pei, Christopher S. Putnam, Theodorus E. Standaert
  • Publication number: 20150060939
    Abstract: An electrostatic discharge protection circuit is disclosed. A method of manufacturing a semiconductor structure includes forming a semiconductor controlled rectifier including a first plurality of fingers between an n-well body contact and an anode in an n-well, and a second plurality of fingers between a p-well body contact and a cathode in a p-well.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 5, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James P. DI SARRO, Robert J. GAUTHIER, JR., Tom C. LEE, Junjun LI, Souvick MITRA, Christopher S. PUTNAM
  • Patent number: 8945955
    Abstract: A method for changing reflectance or resistance of a region in an optoelectronic memory device. Changing the reflectance of the region includes sending an electric current through the region to cause a reflectance change in the region. Changing the resistance of the region includes: projecting a laser beam at a first beam intensity on the region, resulting in the region changing from a first to a second different resistance value; electrically reading the second resistance value during which an optical signal carried by the laser beam has a first digital value; after electrically reading the second resistance value, the laser beam is projected at a second beam intensity on the region resulting in the region changing from the second to the first resistance value; and electrically reading the first resistance value of the region while the laser beam is being projected on the region at the second beam intensity.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Fen Chen, Richard Steven Kontra, Tom C. Lee, Theodore M. Levin, Christopher David Muzzy, Timothy Dooling Sullivan
  • Patent number: 8940588
    Abstract: Aspects of the disclosure provide a dual electrostatic discharge (ESD) protection device in fin field effect transistor (FinFET) process technology and methods of forming the same. In one embodiment, the dual ESD protection device includes: a bulk silicon substrate; a shallow trench isolation (STI) region formed over the bulk silicon substrate; a first ESD device positioned above the STI region; and a second ESD device positioned below the STI region, wherein the first ESD device conducts current above the STI region and the second ESD device conducts current below the STI region.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: January 27, 2015
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher Stephen Putnam
  • Publication number: 20150001580
    Abstract: Device structures and design structures that include a silicon controlled rectifier, as well as fabrication methods for such device structures. A well is formed in the device layer of a silicon-on-insulator substrate. A silicon controlled rectifier is formed that includes an anode in the well. A deep trench capacitor is formed that includes a plate coupled with the well. The plate of the deep trench capacitor extends from the device layer through a buried insulator layer of the silicon-on-insulator substrate and into a handle wafer of the silicon-on-insulator substrate.
    Type: Application
    Filed: June 5, 2014
    Publication date: January 1, 2015
    Inventors: James P. Di Sarro, Robert J. Gauthier, JR., Tom C. Lee, Junjun Li, Souvick Mitra, Chengwen Pei, Christopher S. Putnam, Theodorus E. Standaert
  • Patent number: 8912625
    Abstract: Device structures with a reduced junction area in an SOI process, methods of making the device structures, and design structures for a lateral diode. The device structure includes one or more dielectric regions, such as STI regions, positioned in the device region and intersecting the p-n junction between an anode and cathode. The dielectric regions, which may be formed using shallow trench isolation techniques, function to reduce the width of a p-n junction with respect to the width area of the cathode at a location spaced laterally from the p-n junction and the anode. The width difference and presence of the dielectric regions creates an asymmetrical diode structure. The volume of the device region occupied by the dielectric regions is minimized to preserve the volume of the cathode and anode.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Michel J. Abou-Khalil, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam
  • Publication number: 20140342510
    Abstract: Aspects of the disclosure provide a dual electrostatic discharge (ESD) protection device in fin field effect transistor (FinFET) process technology and methods of forming the same. In one embodiment, the dual ESD protection device includes: a bulk silicon substrate; a shallow trench isolation (STI) region formed over the bulk silicon substrate; a first ESD device positioned above the STI region; and a second ESD device positioned below the STI region, wherein the first ESD device conducts current above the STI region and the second ESD device conducts current below the STI region.
    Type: Application
    Filed: August 4, 2014
    Publication date: November 20, 2014
    Inventors: Robert J. Gauthier, JR., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher Stephen Putnam
  • Patent number: 8891212
    Abstract: RC-trigger circuits for a semiconductor controlled rectifier (SCR), methods of providing electrostatic discharge (ESD) protection, and design structures for a RC-trigger circuit. The RC-trigger circuit is coupled to an input/output (I/O) signal pad by an isolation diode and is coupled to a power supply voltage by a power supply diode. Under normal operating conditions, the isolation diode is reverse biased, isolating the RC-trigger circuit from the input/output (I/O) pad, and the power supply diode is forward biased so that the RC-trigger circuit is supplied with power. The isolation diode may become forward biased during ESD events while the chip is unpowered, causing the RC-trigger circuit to trigger an SCR configured protect the signal pad from ESD into a conductive state. The power supply diode may become reverse biased during the ESD event, which isolates the power supply rail from the ESD voltage pulse.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: November 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Michel J. Abou-Khalil, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam
  • Patent number: 8890249
    Abstract: Aspects of the disclosure provide a dual electrostatic discharge (ESD) protection device in fin field effect transistor (FinFET) process technology and methods of forming the same. In one embodiment, the dual ESD protection device includes: a bulk silicon substrate; a shallow trench isolation (STI) region formed over the bulk silicon substrate; a first ESD device positioned above the STI region; and a second ESD device positioned below the STI region, wherein the first ESD device conducts current above the STI region and the second ESD device conducts current below the STI region.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: November 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Gauthier, Jr., Tom C. Lee, JunJun Li, Souvick Mitra, Christopher S. Putnam
  • Patent number: 8847354
    Abstract: Metal-insulator-metal (MIM) capacitors and methods for fabricating MIM capacitors. The MIM capacitor includes an interlayer dielectric (ILD) layer with apertures each bounded by a plurality of sidewalls and each extending from the top surface of the ILD layer into the first interlayer dielectric layer. A layer stack, which is disposed on the sidewalls of the apertures and the top surface of the ILD layer, includes a bottom conductive electrode, a top conductive electrode, and a capacitor dielectric between the bottom and top conductive electrodes.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: September 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Michel J. Abou-Khalil, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam, Anthony K. Stamper
  • Patent number: 8841174
    Abstract: Device structures and design structures that include a silicon controlled rectifier, as well as fabrication methods for such device structures. A well is formed in the device layer of a silicon-on-insulator substrate. A silicon controlled rectifier is formed that includes an anode in the well. A deep trench capacitor is formed that includes a plate coupled with the well. The plate of the deep trench capacitor extends from the device layer through a buried insulator layer of the silicon-on-insulator substrate and into a handle wafer of the silicon-on-insulator substrate.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: September 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Chengwen Pei, Christopher S. Putnam, Theodorus E. Standaert