Patents by Inventor Tom Collins

Tom Collins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210244043
    Abstract: Edible coatings comprising scalenohedral calcium carbonate particles are provided. The scalenohedral calcium carbonate particles can act as a white pigment to impart white color properties to the edible coatings, or to opacify edible coatings to act as a substrate to subsequent layers containing colors.
    Type: Application
    Filed: June 13, 2019
    Publication date: August 12, 2021
    Inventors: Brent ANDERSON, Tom COLLINS, Kevin KRONEBERGER-STANTON, Delicia POWELL
  • Patent number: 10809473
    Abstract: A photonic integrated circuit comprises a substrate and a passive layer, which is formed on the substrate and incorporates a passive photonic device. The circuit also comprises a layer of III-V material. The layer of III-V material is arranged in a recess of the passive layer and incorporates an active photonic device. The layer of III-V material is configured such that light can be transferred between the passive photonic device and the active photonic device. This photonic integrated circuit provides the advantages of an active device formed from III-V material in an arrangement that is easily planarized, which enables close integration between the active device and electronic components.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: October 20, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Tom Collins
  • Patent number: 10459166
    Abstract: A waveguide structure for optical coupling is provided. The waveguide structure includes a first waveguide embedded in a cladding of a lower refractive index than the first waveguide, a second waveguide of a higher refractive index than the cladding, and an intermediate waveguide. The first waveguide and the second waveguide are physically arranged at the same side of the intermediate waveguide to establish an optical coupling between the first waveguide and the second waveguide through the intermediate waveguide. The first waveguide material has a refractive index value smaller than or equal to 3.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: October 29, 2019
    Assignee: CALIOPA N.V.
    Inventor: Tom Collins
  • Patent number: 10215919
    Abstract: An optical coupling arrangement is provided, comprising a lightwave circuit (LC), a coupling element and an optical waveguide element, wherein the lightwave circuit has a first surface area and wherein the coupling element is attached to the first surface area) such that an optical signal can be transmitted from the lightwave circuit to the coupling element. The optical waveguide element is attached to the coupling element at a first junction zone such that the optical signal can be transmitted from the coupling element to the optical waveguide element). The coupling element is configured to perform mode transformation to the optical signal transmitted from the lightwave circuit to the optical waveguide element and such that adiabatic coupling of the optical signal to the optical waveguide element is enabled. Thus, a better coupling efficiency can be achieved.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: February 26, 2019
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Tom Collins, Marco Lamponi
  • Publication number: 20180231714
    Abstract: A waveguide structure for optical coupling is provided. The waveguide structure includes a first waveguide embedded in a cladding of a lower refractive index than the first waveguide, a second waveguide of a higher refractive index than the cladding, and an intermediate waveguide. The first waveguide and the second waveguide are physically arranged at the same side of the intermediate waveguide to establish an optical coupling between the first waveguide and the second waveguide through the intermediate waveguide. The first waveguide material has a refractive index value smaller than or equal to 3.
    Type: Application
    Filed: April 4, 2018
    Publication date: August 16, 2018
    Inventor: Tom COLLINS
  • Publication number: 20180172935
    Abstract: A photonic integrated circuit comprises a substrate and a passive layer, which is formed on the substrate and incorporates a passive photonic device. The circuit also comprises a layer of III-V material. The layer of III-V material is arranged in a recess of the passive layer and incorporates an active photonic device. The layer of III-V material is configured such that light can be transferred between the passive photonic device and the active photonic device. This photonic integrated circuit provides the advantages of an active device formed from III-V material in an arrangement that is easily planarized, which enables close integration between the active device and electronic components.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 21, 2018
    Inventor: Tom COLLINS
  • Publication number: 20170343734
    Abstract: An optical coupling arrangement is provided, comprising a lightwave circuit (LC), a coupling element and an optical waveguide element, wherein the lightwave circuit has a first surface area and wherein the coupling element is attached to the first surface area) such that an optical signal can be transmitted from the lightwave circuit to the coupling element. The optical waveguide element is attached to the coupling element at a first junction zone such that the optical signal can be transmitted from the coupling element to the optical waveguide element). The coupling element is configured to perform mode transformation to the optical signal transmitted from the lightwave circuit to the optical waveguide element and such that adiabatic coupling of the optical signal to the optical waveguide element is enabled. Thus, a better coupling efficiency can be achieved.
    Type: Application
    Filed: August 17, 2017
    Publication date: November 30, 2017
    Inventors: Tom COLLINS, Marco LAMPONI
  • Patent number: 9799791
    Abstract: A process for manufacturing a photonic circuit comprises: manufacturing on a first wafer a first layer stack comprising an underclad oxide layer and a high refractive index waveguide layer; patterning the high refractive index waveguide layer to generate a passive photonic structures; planarizing the first layer stack with a planarizing oxide layer having a thickness below 300 nanometers above the high refractive index waveguide layer; annealing the patterned high refractive index waveguide layer before and/or after the planarizing oxide layer; manufacturing on a second wafer a second layer stack comprising a detachable mono-crystalline silicon waveguide layer; transferring and bonding the first layer stack and the second layer stack; manufacturing active photonic devices in the mono-crystalline silicon waveguide layer; and realizing evanescent coupling between the mono-crystalline silicon waveguide layer and the high refractive index waveguide layer.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: October 24, 2017
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Tom Collins
  • Patent number: 9746607
    Abstract: The present invention provides a waveguide structure for optical coupling. The waveguide structure includes a first waveguide embedded in a cladding of lower refractive index than the first waveguide, and a second waveguide of higher refractive index than the cladding and distanced from the first waveguide. The waveguide structure further includes an intermediate waveguide, of which at least a part is arranged between the first waveguide and the second waveguide. The first waveguide and the second waveguide each comprise a tapered end for coupling light into and/or out of the intermediate waveguide.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: August 29, 2017
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Tom Collins, Marco Lamponi
  • Publication number: 20170075063
    Abstract: A polarization dependent mode converter is provided on a semiconductor basis, having a waveguide made of a waveguide material comprising SiNx, or another solid waveguide material having a refractive index between 1.7 to 2.3, embedded in a cladding material comprising SiO2 or another solid cladding material having a refractive index between 1 and 1.6, wherein the waveguide includes in a portion along its lengthwise extension a first section having a vertical asymmetric configuration, the asymmetric configuration includes a thin layer of silicon above the waveguide material, the thickness of the thin Si-layer in vertical direction is less than the thickness of the waveguide material in the same vertical direction.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 16, 2017
    Inventors: Joost Brouckaert, Tom Collins
  • Patent number: 9568676
    Abstract: A method for producing an integrated optical circuit comprising an active device and a passive waveguide circuit includes: applying an active waveguide structure on a source wafer substrate; exposing a portion of the source wafer substrate by selectively removing the active waveguide structure; applying a passive waveguide structure on the exposed portion of the source wafer substrate, wherein an aggregation of the active waveguide structure and the passive waveguide structure forms the active device, the active device having a bottom surface facing the source wafer substrate; removing the source wafer substrate from the active device; and attaching the active device to a target substrate comprising the passive waveguide circuit such that the bottom surface of the active device faces the target substrate.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: February 14, 2017
    Assignee: Caliopa NV
    Inventors: Tom Collins, Martijn Tassaert
  • Patent number: 9507111
    Abstract: An optical interposer comprising an array of first order diffraction grating couplers arranged to couple light emitted by an array of single mode Vertical-Cavity Surface-Emitting Lasers (VCSELs) into optical waveguides, the light being emitted in a direction substantially perpendicular to the optical waveguides; a device for refracting the light over at least 4 degrees; an array of output ports arranged to optically couple light from the optical waveguides into an array of optical fibers or other optical elements; and the optical waveguides connecting the array of first order diffraction grating couplers and the array of output ports to route the light from the diffraction gratings into the output ports.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: November 29, 2016
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Tom Collins, Sebastien Lardenois
  • Publication number: 20160327742
    Abstract: The present invention provides a waveguide structure for optical coupling. The waveguide structure includes a first waveguide embedded in a cladding of lower refractive index than the first waveguide, and a second waveguide of higher refractive index than the cladding and distanced from the first waveguide. The waveguide structure further includes an intermediate waveguide, of which at least a part is arranged between the first waveguide and the second waveguide. The first waveguide and the second waveguide each comprise a tapered end for coupling light into and/or out of the intermediate waveguide.
    Type: Application
    Filed: May 5, 2016
    Publication date: November 10, 2016
    Inventors: Tom Collins, Marco Lamponi
  • Publication number: 20160261092
    Abstract: The invention relates to a temperature insensitive semiconductor laser, comprising: a gain region for generating laser radiation; a reflector region for reflecting the laser radiation generated in the gain region, and a waveguide for guiding the laser radiation generated in the gain region to the reflector region and for guiding the laser radiation reflected in the reflector region to the gain region, wherein the gain region, the reflector region and the waveguide define a resonating cavity of the semiconductor laser and wherein the waveguide is substantially athermal.
    Type: Application
    Filed: March 4, 2016
    Publication date: September 8, 2016
    Inventors: Martijn Tassaert, Marco Lamponi, Tom Collins
  • Publication number: 20160047983
    Abstract: A method for producing an integrated optical circuit comprising an active device and a passive waveguide circuit includes: applying an active waveguide structure on a source wafer substrate; exposing a portion of the source wafer substrate by selectively removing the active waveguide structure; applying a passive waveguide structure on the exposed portion of the source wafer substrate, wherein an aggregation of the active waveguide structure and the passive waveguide structure forms the active device, the active device having a bottom surface facing the source wafer substrate; removing the source wafer substrate from the active device; and attaching the active device to a target substrate comprising the passive waveguide circuit such that the bottom surface of the active device faces the target substrate.
    Type: Application
    Filed: August 12, 2015
    Publication date: February 18, 2016
    Inventors: Tom COLLINS, Martijn TASSAERT
  • Publication number: 20150205062
    Abstract: An optical interposer comprising an array of first order diffraction grating couplers arranged to couple light emitted by an array of single mode Vertical-Cavity Surface-Emitting Lasers (VCSELs) into optical waveguides, the light being emitted in a direction substantially perpendicular to the optical waveguides; a device for refracting the light over at least 4 degrees; an array of output ports arranged to optically couple light from the optical waveguides into an array of optical fibers or other optical elements; and the optical waveguides connecting the array of first order diffraction grating couplers and the array of output ports to route the light from the diffraction gratings into the output ports.
    Type: Application
    Filed: March 30, 2015
    Publication date: July 23, 2015
    Inventors: Tom Collins, Sebastien Lardenois
  • Publication number: 20150140720
    Abstract: A process for manufacturing a photonic circuit comprises: manufacturing on a first wafer a first layer stack comprising an underclad oxide layer and a high refractive index waveguide layer; patterning the high refractive index waveguide layer to generate a passive photonic structures; planarizing the first layer stack with a planarizing oxide layer having a thickness below 300 nanometers above the high refractive index waveguide layer; annealing the patterned high refractive index waveguide layer before and/or after the planarizing oxide layer; manufacturing on a second wafer a second layer stack comprising a detachable mono-crystalline silicon waveguide layer; transferring and bonding the first layer stack and the second layer stack; manufacturing active photonic devices in the mono-crystalline silicon waveguide layer; and realizing evanescent coupling between the mono-crystalline silicon waveguide layer and the high refractive index waveguide layer.
    Type: Application
    Filed: January 13, 2015
    Publication date: May 21, 2015
    Inventor: Tom Collins
  • Patent number: 8684614
    Abstract: A detergent dispensing cap for pre-treating a stained fabric. The cap can have a pour volume sized and dimensioned to provide for a unit dose of the detergent composition. A portion of the cap can be provided with surface irregularities for scrubbing a stain.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: April 1, 2014
    Assignee: The Proctor & Gamble Company
    Inventors: Nalini Chawla, Karla Mishell Sanchez, Lauren Eisenmenger, Tom Collins, John Charles Wilkins
  • Publication number: 20110179586
    Abstract: A detergent dispensing cap for pre-treating a stained fabric. The cap can have a pour volume sized and dimensioned to provide for a unit dose of the detergent composition. A portion of the cap can be provided with surface irregularities for scrubbing a stain.
    Type: Application
    Filed: January 26, 2011
    Publication date: July 28, 2011
    Inventors: Nalini Chawla, Karla Mishell Sanchez, Lauren Eisenmenger, Tom Collins, John Charles Wilkins
  • Publication number: 20110179587
    Abstract: A detergent dispensing cap for pre-treating a stained fabric. The cap can have a pour volume sized and dimensioned to provide for a unit dose of the detergent composition. A portion of the cap can be provided with surface irregularities for scrubbing a stain.
    Type: Application
    Filed: January 26, 2011
    Publication date: July 28, 2011
    Inventors: Nalini Chawla, Karla Mishell Sanchez, Lauren Eisenmenger, Tom Collins, John Charles Wilkins