Patents by Inventor Tom Döhring

Tom Döhring has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240335651
    Abstract: The present disclosure is directed generally to mechanical cardiovascular support systems used in the medical field to assist the movement of blood. In particular the present disclosure is directed to mechanical cardiovascular support systems where an impeller is connected to a motor via a rotary drive shaft, the motor is contained in a motor compartment, the rotary drive shaft extends from the motor compartment, and a mechanical seal, for example a rotary shaft lip seal, prevents blood from entering the motor compartment. The seal may have an inverted radial shaft seal, have two opposing radial shaft seals, and/or have one or more elastomeric discs, among other features.
    Type: Application
    Filed: August 2, 2022
    Publication date: October 10, 2024
    Inventors: Marvin Mitze, Vladimir Popov, Kenneth M. Martin, Hans Christof, Inga Schellenberg, Jens Burghaus, Tom Döhring, Johannes Ferch, Ingo Stotz, Johannes Bette, David Minzenmay
  • Patent number: 11678814
    Abstract: A mouthpiece for a device for measuring analytes in exhaled air includes a gas path configured to convey exhaled air to the device and a film arranged so as to block the conveying of the exhaled air through the gas path. A system, in one embodiment, includes the mouthpiece and a device configured to measure analytes in the exhaled air. The mouthpiece is configured to be releasably connected to the device. The device includes a pressure sensor and, in one embodiment, a pump configured to pump air via the mouthpiece when connected to the device. The device is configured to be enabled to measure predefined analytes in the exhaled air when a pressure curve measured via the pressure sensor satisfies one or more predefined conditions.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: June 20, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Stefan Schneider, Markus Thuersam, Frank Barth, Tom Doehring, Klaus Mueller
  • Publication number: 20220161019
    Abstract: Disclosed is a minimally invasive miniaturized percutaneous mechanical circulatory support system. The system may be placed across the aortic valve via a single femoral arterial access point. The system includes a low profile axial rotary blood pump carried by the distal end of a catheter. The system can be percutaneously inserted through the femoral artery and positioned across the aortic valve into the left ventricle. The device actively unloads the left ventricle by pumping blood from the left ventricle into the ascending aorta and systemic circulation. A magnetic drive and encased motor housing allows for purgeless operation for extended periods of time to treat various ailments, for example more than six hours as acute therapy for cardiogenic shock.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 26, 2022
    Inventors: Marvin Mitze, Hans Christof, Vladimir Popov, Martin Schwarz, Leon Wenning, Johannes Bette, Attila Fabiunke, Sina Gerlach, Johannes Stigloher, Julian Görries, Jan Schöfer, Valentin Rex, Johannes Berner, Bernhard Ehni, Johannes Ferch, Hans-Baldung Luley, Tom Döhring, Jens Burghaus, Inga Schellenberg, Hardy Baumbach, Annika Bach, Ingo Stotz, Julian Kassel, Armin Schuelke, Stefan Henneck, David Minzenmay, Thomas Alexander Schlebusch, Tobias Schmid, Tjalf Pirk, Martina Budde, Ricardo Ehrenpfordt, Marc Schmid, Ahmad Mansour, Niko Baeuerle, Ralf Strasswiemer, Uwe Vollmer, Manuel Gaertner, Fabian Eiberger, Tobias Baechle, Karin Schneider, Peter Wassermann
  • Publication number: 20220161021
    Abstract: A minimally invasive miniaturized percutaneous mechanical circulatory support system for transcatheter delivery of a pump to the heart that actively unloads the left ventricle by pumping blood from the left ventricle into the ascending aorta and systemic circulation. The pump may include a tubular housing, a motor, an impeller configured to be rotated by the motor. The impeller may be rotated by the motor, via a shaft with an annular polymeric seal around the shaft, or via a magnetic drive. The system may have an insertion tool having a tubular body and configured to axially movably receive the circulatory support device, and an introducer sheath configured to axially movably receive the insertion tool.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 26, 2022
    Inventors: Marvin Mitze, Hans Christof, Vladimir Popov, Martin Schwarz, Leon Wenning, Johannes Bette, Attila Fabiunke, Julian Görries, Jan Schöfer, Valentin Rex, Johannes Berner, Johannes Ferch, Hans-Baldung Luley, Tom Döhring, Jens Burghaus, Inga Schellenberg, Hardy Baumbach, Annika Bach, Ingo Stotz, Julian Kassel, Armin Schuelke, Stefan Henneck, David Minzenmay, Thomas Alexander Schlebusch, Tobias Schmid, Tjalf Pirk, Martina Budde, Ricardo Ehrenpfordt, Marc Schmid, Ahmad Mansour, niko Baeuerle, Peter Wassermann, Fabian Eiberger, Kenneth M. Martin, Thomas Friedrich, Mario Heintze
  • Publication number: 20220161018
    Abstract: Disclosed is a mechanical circulatory support system for transcatheter delivery to the heart, having a removable guidewire aid to assist with inserting the guidewire along a path that avoids a rotating impeller. The system may comprise a catheter shaft and a circulatory support device carried by the shaft. The device may comprise a tubular housing, an impeller and the guidewire aid. The guidewire aid may include a removable guidewire guide tube. The guide tube may enter a first guidewire port of the tubular housing, exit the tubular housing via a second guidewire port on a side wall of the tubular housing on a distal side of the impeller, enter a third guidewire port on a proximal side of the impeller, and extend proximally through the catheter shaft.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 26, 2022
    Inventors: Marvin Mitze, Hans Christof, Vladimir Popov, Martin Schwarz, Leon Wenning, Johannes Bette, Attila Fabiunke, Julian Görries, Jan Schöfer, Valentin Rex, Johannes Berner, Johannes Ferch, Hans-Baldung Luley, Tom Döhring, Jens Burghaus, Inga Schellenberg, Hardy Baumbach, Annika Bach, Ingo Stotz, Julian Kassel, Armin Schuelke, Stefan Henneck, David Minzenmay, Thomas Alexander Schlebusch, Tobias Schmid, Tjalf Pirk, Martina Budde, Ricardo Ehrenpfordt, Marc Schmid, Ahmad Mansour, Niko Baeuerle, Peter Wassermann, Fabian Eiberger, Kenneth M. Martin
  • Publication number: 20210298636
    Abstract: A mouthpiece for a device for measuring analytes in exhaled air includes a gas path configured to convey exhaled air to the device and a film arranged so as to block the conveying of the exhaled air through the gas path. A system, in one embodiment, includes the mouthpiece and a device configured to measure analytes in the exhaled air. The mouthpiece is configured to be releasably connected to the device. The device includes a pressure sensor and, in one embodiment, a pump configured to pump air via the mouthpiece when connected to the device. The device is configured to be enabled to measure predefined analytes in the exhaled air when a pressure curve measured via the pressure sensor satisfies one or more predefined conditions.
    Type: Application
    Filed: June 1, 2018
    Publication date: September 30, 2021
    Inventors: Stefan Schneider, Markus Thuersam, Frank Barth, Tom Doehring, Klaus Mueller
  • Publication number: 20210293779
    Abstract: A method for actuating an analysis device for running an analysis on a sample material includes reading a user parameter, which represents an analysis to be carried out on the sample material, and loading a plurality of actuation commands for at least one analysis running unit of the analysis device from a command library. The method further includes actuating the at least one analysis running unit using the actuation commands in order to analyze the sample material.
    Type: Application
    Filed: April 18, 2019
    Publication date: September 23, 2021
    Inventors: Jochen Rupp, Tom Doehring, Karsten Seidl, Tino Frank