Patents by Inventor Tom Driscoll

Tom Driscoll has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10416302
    Abstract: Compressive imaging captures images in compressed form, where each sensor does not directly correspond with a pixel, as opposed to standard image capture techniques. This can lead to faster image capture rates due to lower I/O bandwidth requirements, and avoids the need for image compression hardware, as the image is captured in compressed form. Measuring the transformation of an emitted multimodal signal is one method of compressive imaging. Metamaterial antennas and transceivers are well suited for both emitting and receiving multimodal signals, and are thus prime candidates for compressive imaging.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: September 17, 2019
    Assignee: Duke University
    Inventors: David Smith, David Brady, Tom Driscoll, John Hunt, Alexander Mrozack, Matthew Reynolds, Daniel Marks
  • Patent number: 10411343
    Abstract: Described embodiments include an electromagnetic beam steering apparatus. The apparatus includes a first planar component including a first artificially structured effective media having a first tangential refractive index gradient configured to deflect incident electromagnetic beams at a first deflection angle. The apparatus includes a second planar component includes a second artificially structured effective media having a second tangential refractive index gradient configured to deflect incident electromagnetic beams at a second deflection angle. The apparatus includes an electromagnetic beam steering structure configured to independently rotate the first planar component and the second planar component about a coaxial axis such that an electromagnetic beam incident on the first planar component exits the second planar component as a steered electromagnetic beam.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: September 10, 2019
    Assignee: Elwha LLC
    Inventors: Tom Driscoll, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20190273298
    Abstract: The present disclosure provides systems and methods associated with mode conversion for electromagnetic field modification. A mode converting structure (holographic metamaterial) is formed with a distribution of dielectric constants chosen to convert an electromagnetic radiation pattern from a first mode to a second mode to attain a target electromagnetic radiation pattern that is different from the input electromagnetic radiation pattern. A solution to a holographic equation provides a sufficiently accurate approximation of a distribution of dielectric constants that can be used to form a mode converting device for use with one or more transmission lines, such as waveguides. One or more optimization algorithms can be used to improve the efficiency of the mode conversion.
    Type: Application
    Filed: March 5, 2019
    Publication date: September 5, 2019
    Inventors: TOM DRISCOLL, John Desmond Hunt, Nathan Ingle Landy, David R. Smith, Yaroslav A. Urzhumov
  • Patent number: 10396468
    Abstract: An embodiment of an antenna includes first and second transmission lines, first antenna elements, and second antenna elements. The first transmission line is configured to guide a first signal such that the first signal has a characteristic of a first value, and the second transmission line is configured to guide a second signal such that the second signal has the same characteristic but of a second value that is different than the first value. The first antenna elements are each disposed adjacent to the first transmission line and are each configured to radiate the first signal in response to a respective first control signal, and the second antenna elements are each disposed adjacent to the second transmission line and are each configured to radiate the second signal in response to a respective second control signal. Such an antenna can have better main-beam and side-lobe characteristics, and a better SIR, than prior antennas.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: August 27, 2019
    Assignee: Echodyne Corp
    Inventors: Tom Driscoll, John Desmond Hunt, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl, Felix D. Yuen
  • Patent number: 10386479
    Abstract: Compressive imaging captures images in compressed form, where each sensor does not directly correspond with a pixel, as opposed to standard image capture techniques. This can lead to faster image capture rates due to lower I/O bandwidth requirements, and avoids the need for image compression hardware, as the image is captured in compressed form. Measuring the transformation of an emitted multimodal signal is one method of compressive imaging. Metamaterial antennas and transceivers are well suited for both emitting and receiving multimodal signals, and are thus prime candidates for compressive imaging.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: August 20, 2019
    Assignee: Duke University
    Inventors: David Brady, Tom Driscoll, John Hunt, Daniel Marks, Alexander Mrozack, Matthew Reynolds, David R. Smith
  • Patent number: 10349864
    Abstract: Methods and system for performing magnetic induction tomography imaging of an object are provided. An apparatus includes an array of unit cells and a control circuit coupled to the array of unit cells. The array of unit cells can generate a first magnetic field using an excitation pattern in the direction of a target object and sense a second magnetic field induced in the target object by the first magnetic field. The control circuit can determine a minimum of the first magnetic field. The minimum may correspond to a higher conductivity region of the target object. The control circuit can adjust the excitation pattern based on the higher conductivity region of the target object.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: July 16, 2019
    Assignee: Elwha LLC
    Inventors: Tom Driscoll, David R. Smith, Yaroslav A. Urzhumov
  • Patent number: 10326207
    Abstract: Discrete-dipole methods and systems for applications to complementary metamaterials are disclosed. According to an aspect, a method includes identifying a discrete dipole interaction matrix for a plurality of discrete dipoles corresponding to a plurality of scattering elements of a surface scattering antenna.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: June 18, 2019
    Assignee: Duke University
    Inventors: David R. Smith, Nathan Landy, John Hunt, Tom A. Driscoll
  • Publication number: 20190137601
    Abstract: An embodiment of a radar subsystem includes at least one antenna and a control circuit. The at least one antenna is configured to radiate at least one first transmit beam and to form at least one first receive beam. And the control circuit is configured to steer the at least one first transmit beam and the at least one first receive beam over a first field of regard during a first time period, and to steer the at least one first transmit beam and the at least one first receive beam over a second field of regard during a second time period.
    Type: Application
    Filed: November 6, 2018
    Publication date: May 9, 2019
    Applicant: Echodyne Corp
    Inventors: Tom Driscoll, John Desmond Hunt, Robert Tilman Worl, Muhammad Rameez Chatni, Aanand Esterberg, Kerem Karadayi, Christopher L. Lambrecht, Nathan Ingle Landy, Skyler Martens, Dominic Chun Kit Wu
  • Publication number: 20190135274
    Abstract: A vehicle includes an occupant monitoring system configured to acquire occupant data regarding an occupant of the vehicle; a robotic driving system configured to provide robotic control of the vehicle during a robotic driving mode; and a processing circuit coupled to the occupant monitoring system and the robotic driving system. The processing circuit is configured to: receive the occupant data; determine a vehicle operation command based on the occupant data, the vehicle operation command configured to affect operation of the vehicle while the vehicle is in the robotic driving mode; and provide the vehicle operation command to a vehicle system.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 9, 2019
    Applicant: Elwha LLC
    Inventors: Alistair K. Chan, Tom Driscoll, Roderick A. Hyde, Jordin T. Kare, David R. Smith, Clarence T. Tegreene
  • Publication number: 20190115651
    Abstract: According to an embodiment, an antenna includes a conductive antenna element, a voltage-bias conductor, and a polarization-compensation conductor. The conductive antenna element is configured to radiate a first signal having a first polarization, and the voltage-bias conductor is coupled to a side of the antenna element and is configured to radiate a second signal having a second polarization that is different from the first polarization. And the polarization-compensating conductor is coupled to an opposite side of the antenna element and is configured to radiate third a signal having a third polarization that is approximately the same as the second polarization and that destructively interferes with the second signal. Such an antenna can be configured to reduce cross-polarization of the signals that its antenna elements radiate.
    Type: Application
    Filed: October 12, 2018
    Publication date: April 18, 2019
    Applicant: Echodyne Corp
    Inventors: Tom Driscoll, Nathan Ingle Landy, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl
  • Patent number: 10236574
    Abstract: Described embodiments include an antenna and a method. In an embodiment, the antenna includes a holographic aperture having a surface including a plurality of individual electromagnetic wave scattering elements distributed thereon with a periodic inter-element spacing equal to or less than one-half of a free space wavelength of an operating frequency of the antenna. The aperture is configured to define at least two selectable complex radiofrequency electromagnetic fields on the surface with tangential wavenumbers up to 2? over the aperture element spacing (k_apt=2?/a). In an embodiment, the holographic aperture includes an amplitude and phase modulation holographic aperture.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: March 19, 2019
    Inventors: Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Milton Perque, Jr., David R. Smith, Yaroslav A. Urzhumov
  • Patent number: 10235737
    Abstract: Embodiments disclosed herein relate to an interactive surgical drape and system including at least one sensor and at least one controller that operates indicating sensing feedback from the at least one sensor to cause display of information on a dynamic display integrated with the interactive surgical drape. The dynamic display assists the surgical team while performing surgery and can operate to improve the efficiency and/or effectiveness of the surgical team.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: March 19, 2019
    Assignee: Elwha LLC
    Inventors: Jesse R. Cheatham, III, Joel Cherkis, Paul H. Dietz, Tom Driscoll, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Neil Jordan, Jordin T. Kare, Eric C. Leuthardt, Nathan P. Myhrvold, Patrick Neill, Tony S. Pan, Robert C. Petroski, David R. Smith, Elizabeth A. Sweeney, Desney S. Tan, Clarence T. Tegreene, David Lawrence Tennenhouse, Yaroslav A. Urzhumov, Gary Wachowicz, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10226219
    Abstract: Embodiments disclosed herein relate to an interactive surgical drape and system including at least one sensor and at least one controller that operates indicating sensing feedback from the at least one sensor to cause display of information on a dynamic display integrated with the interactive surgical drape. The dynamic display assists the surgical team while performing surgery and can operate to improve the efficiency and/or effectiveness of the surgical team.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: March 12, 2019
    Assignee: Elwha LLC
    Inventors: Jesse R. Cheatham, III, Joel Cherkis, Paul H. Dietz, Tom Driscoll, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Neil Jordan, Jordin T. Kare, Eric C. Leuthardt, Nathan P. Myhrvold, Patrick Neill, Tony S. Pan, Robert C. Petroski, David R. Smith, Elizabeth A. Sweeney, Desney S. Tan, Clarence T. Tegreene, David Lawrence Tennenhouse, Yaroslav A. Urzhumov, Gary Wachowicz, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20190074600
    Abstract: In an embodiment, an antenna includes a one-dimensional array of antenna cells, a signal feed, and signal couplers. The antenna cells are each spaced from an adjacent antenna cell by less than one half a wavelength at which the antenna cells are configured to transmit and to receive, are configured to generate an array beam that is narrower in a dimension than in an orthogonal dimension, and are configured to steer the array beam in the dimension. And the signal couplers are each configured to couple a respective one of the antenna cells to the signal feed in response a respective control signal having an active level. For example, the antenna cells can be arranged such that a straight line intersects their geometric centers.
    Type: Application
    Filed: September 7, 2018
    Publication date: March 7, 2019
    Applicant: Echodyne Corp
    Inventors: Adam Bily, Tom Driscoll, John Desmond Hunt, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl
  • Patent number: 10224587
    Abstract: The present disclosure provides systems and methods associated with mode conversion for electromagnetic field modification. A mode converting structure (holographic metamaterial) is formed with a distribution of dielectric constants chosen to convert an electromagnetic radiation pattern from a first mode to a second mode to attain a target electromagnetic radiation pattern that is different from the input electromagnetic radiation pattern. A solution to a holographic equation provides a sufficiently accurate approximation of a distribution of dielectric constants that can be used to form a mode converting device for use with one or more transmission lines, such as waveguides. One or more optimization algorithms can be used to improve the efficiency of the mode conversion.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: March 5, 2019
    Assignee: Elwha LLC
    Inventors: Tom Driscoll, John Desmond Hunt, Nathan Ingle Landy, David R. Smith, Yaroslav A. Urzhumov
  • Publication number: 20190011571
    Abstract: A three-dimensional map of an environment with buildings is used to computationally predict locations and times of global navigation satellite system (GNSS) transmission quality. A global navigation satellite system (GNSS) receiver can reconcile received satellite transmissions with these predicted satellite transmissions. By comparing actual transmission quality with predicted transmission quality, a system can determine unmodeled obstructions, temporary obstructions, jamming, spoofing or other origins of interference with predicted transmission quality of a satellite in a GNSS.
    Type: Application
    Filed: September 10, 2018
    Publication date: January 10, 2019
    Inventors: Tom Driscoll, Joseph R. Guerci, Russell J. Hannigan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 10173667
    Abstract: A vehicle includes an occupant monitoring system and a processing circuit coupled to the occupant monitoring system. The occupant monitoring system is configured to acquire occupant data regarding an occupant of the vehicle. The processing circuit is configured to receive the occupant data; determine a vehicle operation command based on the occupant data, the vehicle operation command configured to affect operation of the vehicle while the vehicle is in a robotic driving mode; and provide the vehicle operation command to a vehicle system.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: January 8, 2019
    Assignee: Elwha LLC
    Inventors: Alistair K. Chan, Tom Driscoll, Roderick A. Hyde, Jordin T. Kare, David R. Smith, Clarence T. Tegreene
  • Patent number: 10170831
    Abstract: A system for generating, forming and receiving electromagnetic transmissions according to a dynamically selectable electromagnetic pattern, beam pattern or beam form can use a selectably altered backplane structure. A spatially dependent pattern of amplitudes and/or phases can be formed by selecting a state of the selectably altered backplane structure from a set of states. The altered backplane structure can include a movable mechanical structure that causes a set of patterns of spatially dependent amplitudes of electromagnetic energy depending on a position of the structure. A beam pattern from a set of beam patterns can be selected by selecting a state (e.g., the position) of the backplane structure that creates a set of spatially dependent amplitudes of electromagnetic energy.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: January 1, 2019
    Assignee: Elwha LLC
    Inventors: Jeffrey A. Bowers, Tom Driscoll, Roderick A. Hyde, Jordin T. Kare, David R. Smith, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Publication number: 20180372837
    Abstract: An embodiment of an antenna array includes a transmit antenna and a receive antenna. The transmit antenna has, in one dimension, a first size, and has, in another dimension that is approximately orthogonal to the one dimension, a second size that is greater than the first size. And the receive antenna has, in approximately the one dimension, a third size that is greater than the first size, and has, in approximately the other dimension, a fourth size that is less than the second size. For example, such an antenna array, and a radar system that incorporates the antenna array, can provide a high Rayleigh resolution (i.e., a narrow Half Power Beam Width (HPBW)) with significantly reduced aliasing as compared to prior antenna arrays and radar systems for a given number of antenna-array channels.
    Type: Application
    Filed: June 26, 2018
    Publication date: December 27, 2018
    Applicant: Echodyne Corp
    Inventors: Adam Bily, Tom Driscoll, John Desmond Hunt, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl
  • Patent number: 10109080
    Abstract: Multi-sensor compressive imaging systems can include an imaging component (such an an RF, microwave, or mmW metamaterial surface antenna) and an auxiliary sensing component (such as an EO/IR sensor). In some approaches, the auxiliary sensing component includes a structured light sensor configured to identify the location or posture of an imaging target within a field of view of the imaging component. In some approaches, a reconstructed RF, microwave, or mmW image may be combined with a visual image of a region of interest to provide a multi-spectral representation of the region of interest.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: October 23, 2018
    Assignee: Duke University
    Inventors: David Brady, Tom Driscoll, John Hunt, Daniel Marks, Alexander Mrozack, Matthew Reynolds, David R. Smith