Patents by Inventor Tom E. Blomberg

Tom E. Blomberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160032489
    Abstract: Methods of forming a crystalline strontium titanate layer may include providing a substrate with a crystal enhancement surface (e.g., Pt), depositing strontium titanate by atomic layer deposition, and conducting a post-deposition anneal to crystallize the strontium titanate. Large single crystal domains may be formed, laterally extending greater distances than the thickness of the strontium titanate and demonstrating greater ordering than the underlying crystal enhancement surface provided to initiate ALD. Functional oxides, particularly perovskite complex oxides, can be heteroepitaxially deposited over the crystallized STO.
    Type: Application
    Filed: May 20, 2015
    Publication date: February 4, 2016
    Inventor: Tom E. Blomberg
  • Publication number: 20160035852
    Abstract: In one aspect, methods of silicidation and germanidation are provided. In some embodiments, methods for forming metal silicide can include forming a non-oxide interface, such as germanium or solid antimony, over exposed silicon regions of a substrate. Metal oxide is formed over the interface layer. Annealing and reducing causes metal from the metal oxide to react with the underlying silicon and form metal silicide. Additionally, metal germanide can be formed by reduction of metal oxide over germanium, whether or not any underlying silicon is also silicided. In other embodiments, nickel is deposited directly and an interface layer is not used. In another aspect, methods of depositing nickel thin films by vapor phase deposition processes are provided. In some embodiments, nickel thin films are deposited by ALD.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 4, 2016
    Inventors: VILJAMI J. PORE, SUVI P. HAUKKA, TOM E. BLOMBERG, EVA E. TOIS
  • Publication number: 20150303101
    Abstract: An atomic layer deposition (ALD) process for depositing a fluorine-containing thin film on a substrate can include a plurality of super-cycles. Each super-cycle may include a metal fluoride sub-cycle and a reducing sub-cycle. The metal fluoride sub-cycle may include contacting the substrate with a metal fluoride. The reducing sub-cycle may include alternately and sequentially contacting the substrate with a reducing agent and a nitrogen reactant.
    Type: Application
    Filed: April 17, 2014
    Publication date: October 22, 2015
    Inventors: Tom E. Blomberg, Linda Lindroos, Hannu Huotari
  • Patent number: 9129897
    Abstract: In one aspect, methods of silicidation and germanidation are provided. In some embodiments, methods for forming metal silicide can include forming a non-oxide interface, such as germanium or solid antimony, over exposed silicon regions of a substrate. Metal oxide is formed over the interface layer. Annealing and reducing causes metal from the metal oxide to react with the underlying silicon and form metal silicide. Additionally, metal germanide can be formed by reduction of metal oxide over germanium, whether or not any underlying silicon is also silicided. In other embodiments, nickel is deposited directly and an interface layer is not used. In another aspect, methods of depositing nickel thin films by vapor phase deposition processes are provided. In some embodiments, nickel thin films are deposited by ALD.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: September 8, 2015
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Viljami J. Pore, Suvi P. Haukka, Tom E. Blomberg, Eva E. Tois
  • Publication number: 20150249005
    Abstract: Antimony oxide thin films are deposited by atomic layer deposition using an antimony reactant and an oxygen source. Antimony reactants may include antimony halides, such as SbCl3, antimony alkylamines, and antimony alkoxides, such as Sb(OEt)3. The oxygen source may be, for example, ozone. In some embodiments the antimony oxide thin films are deposited in a batch reactor. The antimony oxide thin films may serve, for example, as etch stop layers or sacrificial layers.
    Type: Application
    Filed: March 13, 2015
    Publication date: September 3, 2015
    Inventors: RAIJA H. MATERO, LINDA LINDROOS, HESSEL SPREY, JAN WILLEM MAES, DAVID DE ROEST, DIETER PIERREUX, KEES VAN DER JEUGD, LUCIA D'URZO, TOM E. BLOMBERG
  • Patent number: 9062390
    Abstract: Methods of forming a crystalline strontium titanate layer may include providing a substrate with a crystal enhancement surface (e.g., Pt), depositing strontium titanate by atomic layer deposition, and conducting a post-deposition anneal to crystallize the strontium titanate. Large single crystal domains may be formed, laterally extending greater distances than the thickness of the strontium titanate and demonstrating greater ordering than the underlying crystal enhancement surface provided to initiate ALD. Functional oxides, particularly perovskite complex oxides, can be heteroepitaxially deposited over the crystallized STO.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: June 23, 2015
    Assignee: ASM International N.V.
    Inventor: Tom E. Blomberg
  • Patent number: 9006112
    Abstract: Antimony oxide thin films are deposited by atomic layer deposition using an antimony reactant and an oxygen source. Antimony reactants may include antimony halides, such as SbCl3, antimony alkylamines, and antimony alkoxides, such as Sb(OEt)3. The oxygen source may be, for example, ozone. In some embodiments the antimony oxide thin films are deposited in a batch reactor. The antimony oxide thin films may serve, for example, as etch stop layers or sacrificial layers.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: April 14, 2015
    Assignee: ASM International N.V.
    Inventors: Raija H. Matero, Linda Lindroos, Hessel Sprey, Jan Willem Maes, David de Roest, Dieter Pierreux, Kees van der Jeugd, Lucia D'Urzo, Tom E. Blomberg
  • Publication number: 20150099066
    Abstract: The present invention relates generally to methods and apparatus for the controlled growing of material on substrates. According to embodiments of the present invention, a precursor feed is controlled in order to provide an optimal pulse profile. This may be accomplished by splitting the feed into two paths. One of the paths is restricted in a continuous manner. The other path is restricted in a periodic manner. The output of the two paths converges at a point prior to entry of the reactor. Therefore, a single precursor source is able to fed precursor in to a reactor under two different conditions, one which can be seen as mimicking ALD conditions and one which can be seen as mimicking CVD conditions. This allows for an otherwise single mode reactor to be operated in a plurality of modes including one or more ALD/CVD combination modes. Additionally, the pulse profile of each pulse can be modified.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventors: Hannu Huotari, Tom E. Blomberg
  • Patent number: 8841182
    Abstract: Methods of treating metal-containing thin films, such as films comprising titanium carbide, with a silane/borane agent are provided. In some embodiments a film including titanium carbide is deposited on a substrate by an atomic layer deposition (ALD) process. The process may include a plurality of deposition cycles involving alternating and sequential pulses of a first source chemical that includes titanium and at least one halide ligand, a second source chemical that includes metal and carbon, where the metal and the carbon from the second source chemical are incorporated into the thin film, and a third source chemical, where the third source chemical is a silane or borane that at least partially reduces oxidized portions of the titanium carbide layer formed by the first and second source chemicals. The treatment can form a capping layer on the metal carbide film.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 23, 2014
    Assignee: ASM IP Holding B.V.
    Inventors: Jerry Chen, Vladimir Machkaoutsan, Brennan Milligan, Jan Willem Maes, Suvi Haukka, Eric Shero, Tom E. Blomberg, Dong Li
  • Publication number: 20140273452
    Abstract: In one aspect, methods of forming smooth ternary metal nitride films, such as TixWyNz films, are provided. In some embodiments, the films are formed by an ALD process comprising multiple super-cycles, each super-cycle comprising two deposition sub-cycles. In one sub-cycle a metal nitride, such as TiN is deposited, for example from TiCl4 and NH3, and in the other sub-cycle an elemental metal, such as W, is deposited, for example from WF6 and Si2H6. The ratio of the numbers of each sub-cycle carried out within each super-cycle can be selected to achieve a film of the desired composition and having desired properties.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: ASM IP HOLDING B.V.
    Inventors: Tom E. Blomberg, Jaakko Anttila
  • Publication number: 20140273510
    Abstract: Methods of treating metal-containing thin films, such as films comprising titanium carbide, with a silane/borane agent are provided. In some embodiments a film comprising titanium carbide is deposited on a substrate by an atomic layer deposition (ALD) process. The process may include a plurality of deposition cycles involving alternating and sequential pulses of a first source chemical that comprises titanium and at least one halide ligand, a second source chemical comprising metal and carbon, wherein the metal and the carbon from the second source chemical are incorporated into the thin film, and a third source chemical, wherein the third source chemical is a silane or borane that at least partially reduces oxidized portions of the titanium carbide layer formed by the first and second source chemicals. In some embodiments treatment forms a capping layer on the metal carbide film.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Jerry Chen, Vladimir Machkaoutsan, Brennan Milligan, Jan Willem Maes, Suvi Haukka, Eric Shero, Tom E. Blomberg, Dong Li
  • Publication number: 20140193579
    Abstract: The present invention relates generally to methods and apparatus for the controlled growing of material on substrates. According to embodiments of the present invention, a precursor fed is split in to two paths from a precursor source. One of the paths is restricted in a continuous manner. The other path is restricted in a periodic manner. The output of the two paths converges at a point prior to entry of the reactor. Therefore, a single precursor source is able to fed precursor in to a reactor under two different conditions, one which can be seen as mimicking ALD conditions and one which can be seen as mimicking CVD conditions. This allows for an otherwise single mode reactor to be operated in a plurality of modes including one or more ALD/CVD combination modes.
    Type: Application
    Filed: August 30, 2013
    Publication date: July 10, 2014
    Applicant: ASM INTERNATIONAL N.V.
    Inventor: Tom E. Blomberg
  • Patent number: 8524322
    Abstract: The present invention relates generally to methods and apparatus for the controlled growing of material on substrates. According to embodiments of the present invention, a precursor fed is split in to two paths from a precursor source. One of the paths is restricted in a continuous manner. The other path is restricted in a periodic manner. The output of the two paths converges at a point prior to entry of the reactor. Therefore, a single precursor source is able to fed precursor in to a reactor under two different conditions, one which can be seen as mimicking ALD conditions and one which can be seen as mimicking CVD conditions. This allows for an otherwise single mode reactor to be operated in a plurality of modes including one or more ALD/CVD combination modes.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: September 3, 2013
    Assignee: ASM International N.V.
    Inventor: Tom E Blomberg
  • Publication number: 20130115768
    Abstract: In one aspect, methods of silicidation and germanidation are provided. In some embodiments, methods for forming metal silicide can include forming a non-oxide interface, such as germanium or solid antimony, over exposed silicon regions of a substrate. Metal oxide is formed over the interface layer. Annealing and reducing causes metal from the metal oxide to react with the underlying silicon and form metal silicide. Additionally, metal germanide can be formed by reduction of metal oxide over germanium, whether or not any underlying silicon is also silicided. In other embodiments, nickel is deposited directly and an interface layer is not used. In another aspect, methods of depositing nickel thin films by vapor phase deposition processes are provided. In some embodiments, nickel thin films are deposited by ALD. Nickel thin films can be used directly in silicidation and germanidation processes.
    Type: Application
    Filed: August 22, 2012
    Publication date: May 9, 2013
    Inventors: Viljami J. Pore, Suvi P. Haukka, Tom E. Blomberg, Eva E. Tois
  • Publication number: 20130108877
    Abstract: Methods of forming a crystalline strontium titanate layer may include providing a substrate with a crystal enhancement surface (e.g., Pt), depositing strontium titanate by atomic layer deposition, and conducting a post-deposition anneal to crystallize the strontium titanate. Large single crystal domains may be formed, laterally extending greater distances than the thickness of the strontium titanate and demonstrating greater ordering than the underlying crystal enhancement surface provided to initiate ALD. Functional oxides, particularly perovskite complex oxides, can be heteroepitaxially deposited over the crystallized STO.
    Type: Application
    Filed: September 11, 2012
    Publication date: May 2, 2013
    Inventor: Tom E. Blomberg
  • Publication number: 20120269962
    Abstract: Methods are disclosed herein for depositing a passivation layer comprising fluorine over a dielectric material that is sensitive to chlorine, bromine, and iodine. The passivation layer can protect the sensitive dielectric layer thereby enabling deposition using precursors comprising chlorine, bromine, and iodine over the passivation layer.
    Type: Application
    Filed: October 14, 2010
    Publication date: October 25, 2012
    Applicant: ASM INTERNATIONAL N.V.
    Inventors: Tom E. Blomberg, Eva E. Tois, Robert Huggare, Jan Willem Maes, Vladimir Machkaoutsan, Dieter Pierreux
  • Publication number: 20120270393
    Abstract: In one aspect, methods of silicidation and germanidation are provided. In some embodiments, methods for forming metal silicide can include forming a non-oxide interface, such as germanium or solid antimony, over exposed silicon regions of a substrate. Metal oxide is formed over the interface layer. Annealing and reducing causes metal from the metal oxide to react with the underlying silicon and form metal silicide. Additionally, metal germanide can be formed by reduction of metal oxide over germanium, whether or not any underlying silicon is also silicided. In other embodiments, nickel is deposited directly and an interface layer is not used. In another aspect, methods of depositing nickel thin films by vapor phase deposition processes are provided. In some embodiments, nickel thin films are deposited by ALD.
    Type: Application
    Filed: April 20, 2012
    Publication date: October 25, 2012
    Applicant: ASM INTERNATIONAL N.V.
    Inventors: Viljami J. Pore, Suvi P. Haukka, Tom E. Blomberg, Eva E. Tois
  • Patent number: 7846499
    Abstract: A method of growing a thin film on a substrate by pulsing vapor-phase precursors material into a reaction chamber according to the ALD method. The method comprises vaporizing at least one precursor from a source material container maintained at a vaporising temperature, repeatedly feeding pulses of the vaporized precursor via a feed line into the reaction chamber at a first pressure, and subsequently purging the reaction chamber with pulses of inactive gas fed via the feed line at a second pressure. The second pressure is maintained at the same as or a higher level than the first pressure for separating successive pulses of said vaporized precursor from each other.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: December 7, 2010
    Assignee: ASM International N.V.
    Inventor: Tom E. Blomberg