Patents by Inventor Tom Herrmann

Tom Herrmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190051747
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to fully depleted silicon on insulator (SOI) semiconductor structures and methods of manufacture. The structure includes: a gate structure formed over a semiconductor material; a source region adjacent to the gate structure; a drain region remote from the gate structure; and a drift region separating the gate structure from the drain region. The drift region includes an epitaxial material grown on the semiconductor material which increases the thickness of the semiconductor material in the drift region.
    Type: Application
    Filed: August 8, 2017
    Publication date: February 14, 2019
    Inventors: Ignasi CORTES MAYOL, Christian SCHIPPEL, Alban ZAKA, Tom HERRMANN, El Mehdi BAZIZI
  • Patent number: 10121846
    Abstract: The present disclosure provides resistor structures in sophisticated integrated circuits on the basis of an SOI architecture, wherein a very thin semiconductor layer, typically used for forming fully depleted SOI transistors, may be used as a resistor body. In this manner, significantly higher sheet resistance values may be achieved, thereby providing the potential for implementing high ohmic resistors into sophisticated integrated circuits.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: November 6, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Alban Zaka, Ignasi Cortes Mayol, Tom Herrmann, El Mehdi Bazizi, John Morgan
  • Publication number: 20180090558
    Abstract: A capacitor, such as an N-well capacitor, in a semiconductor device includes a floating semiconductor region, which allows a negative biasing of the channel region of the capacitor while suppressing leakage into the depth of the substrate. In this manner, N-well-based capacitors may be provided in the device level and may have a substantially flat capacitance/voltage characteristic over a moderately wide range of voltages. Consequently, alternating polarity capacitors formed in the metallization system may be replaced by semiconductor-based N-well capacitors.
    Type: Application
    Filed: September 27, 2016
    Publication date: March 29, 2018
    Inventors: Alban Zaka, Ignasi Cortes Mayol, Tom Herrmann, Andrei Sidelnicov, El Mehdi Bazizi
  • Patent number: 9711513
    Abstract: A semiconductor structure includes a nonvolatile memory cell including a source region, a channel region and a drain region that are provided in a semiconductor material. The channel region includes a first portion adjacent the source region and a second portion between the first portion of the channel region and the drain region. An electrically insulating floating gate is provided over the first portion of the channel region. The nonvolatile memory cell further includes a select gate and a control gate. The first portion of the select gate is provided over the second portion of the channel region. The second portion of the select gate is provided over a portion of the floating gate that is adjacent to the first portion of the select gate. The control gate is provided over the floating gate and adjacent to the second portion of the select gate.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: July 18, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Alban Zaka, Sven Beyer, Tom Herrmann, El Mehdi Bazizi
  • Patent number: 9583640
    Abstract: A method comprises providing a semiconductor structure including a nonvolatile memory cell element comprising a floating gate, a select gate and an erase gate formed over a semiconductor material, the select gate and the erase gate being arranged at opposite sides of the floating gate, forming a control gate insulation material layer over the semiconductor structure, forming a control gate material layer over the control gate insulation material layer, performing a first patterning process that forms a control gate over the floating gate and comprises a first etch process that selectively removes a material of the control gate material layer relative to a material of the control gate insulation material layer, and performing a second patterning process that patterns the control gate insulation material layer, the patterned control gate insulation material layer covering portions of the semiconductor structure that are not covered by the control gate.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: February 28, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ralf Richter, Sven Beyer, Carsten Grass, Tom Herrmann
  • Publication number: 20170047336
    Abstract: A semiconductor structure includes a nonvolatile memory cell including a source region, a channel region and a drain region that are provided in a semiconductor material. The channel region includes a first portion adjacent the source region and a second portion between the first portion of the channel region and the drain region. An electrically insulating floating gate is provided over the first portion of the channel region. The nonvolatile memory cell further includes a select gate and a control gate. The first portion of the select gate is provided over the second portion of the channel region. The second portion of the select gate is provided over a portion of the floating gate that is adjacent to the first portion of the select gate. The control gate is provided over the floating gate and adjacent to the second portion of the select gate.
    Type: Application
    Filed: October 20, 2015
    Publication date: February 16, 2017
    Inventors: Alban Zaka, Sven Beyer, Tom Herrmann, El Mehdi Bazizi
  • Patent number: 8941187
    Abstract: In a three-dimensional transistor configuration, a strain-inducing isolation material is provided, at least in the drain and source areas, thereby inducing a strain, in particular at and in the vicinity of the PN junctions of the three-dimensional transistor. In this case, superior transistor performance may be achieved, while in some illustrative embodiments even the same type of internally stressed isolation material may result in superior transistor performance of P-channel transistors and N-channel transistors.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: January 27, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Tim Baldauf, Andy Wei, Tom Herrmann, Stefan Flachowsky, Ralf Illgen
  • Patent number: 8916928
    Abstract: When forming sophisticated multiple gate transistors and planar transistors in a common manufacturing sequence, the threshold voltage characteristics of the multiple gate transistors may be intentionally “degraded” by selectively incorporating a dopant species into corner areas of the semiconductor fins, thereby obtaining a superior adaptation of the threshold voltage characteristics of multiple gate transistors and planar transistors. In advantageous embodiments, the incorporation of the dopant species may be accomplished by using the hard mask, which is also used for patterning the self-aligned semiconductor fins.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: December 23, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Tim Baldauf, Andy Wei, Tom Herrmann, Stefan Flachowsky, Ralf Illgen
  • Patent number: 8912606
    Abstract: Methods for forming integrated circuits and integrated circuits are disclosed. The integrated circuits comprise gate structures overlying and transverse to one or more fins that are delineated by trenches formed in a semiconductor substrate. Protruding portions are formed in the trenches in between the gate electrode structure on exposed sidewall surfaces of the one or more fins. The trenches are filled with an insulating material between the protruding portions and the gate structures.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: December 16, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Tim Baldauf, Tom Herrmann, Stefan Flachowsky, Ralf Illgen
  • Patent number: 8859408
    Abstract: Generally, the present disclosure is directed to methods of stabilizing metal silicide contact regions formed in a silicon-germanium active area of a semiconductor device, and devices comprising stabilized metal silicides. One illustrative method disclosed herein includes performing an activation anneal to activate dopants implanted in an active area of a semiconductor device, wherein the active area comprises germanium. Additionally, the method includes, among other things, performing an ion implantation process to implant ions into the active area after performing the activation anneal, forming a metal silicide contact region in the active area, and forming a conductive contact element to the metal silicide contact region.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: October 14, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stefan Flachowsky, Clemens Fitz, Tom Herrmann
  • Publication number: 20140206157
    Abstract: A method comprises providing a semiconductor structure comprising a substrate and a nanowire above the substrate. The nanowire comprises a first semiconductor material and extends in a vertical direction of the substrate. A material layer is formed above the substrate. The material layer annularly encloses the nanowire. A first part of the nanowire is selectively removed relative to the material layer. A second part of the nanowire is not removed. A distal end of the second part of the nanowire distal from the substrate is closer to the substrate than a surface of the material layer so that the semiconductor structure has a recess at the location of the nanowire. The distal end of the nanowire is exposed at the bottom of the recess. The recess is filled with a second semiconductor material. The second semiconductor material is differently doped than the first semiconductor material.
    Type: Application
    Filed: January 23, 2013
    Publication date: July 24, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Tim Baldauf, Stefan Flachowsky, Tom Herrmann, Ralf Illgen
  • Publication number: 20140027825
    Abstract: When forming sophisticated multiple gate transistors and planar transistors in a common manufacturing sequence, the threshold voltage characteristics of the multiple gate transistors may be intentionally “degraded” by selectively incorporating a dopant species into corner areas of the semiconductor fins, thereby obtaining a superior adaptation of the threshold voltage characteristics of multiple gate transistors and planar transistors. In advantageous embodiments, the incorporation of the dopant species may be accomplished by using the hard mask, which is also used for patterning the self-aligned semiconductor fins.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 30, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Tim Baldauf, Andy Wei, Tom Herrmann, Stefan Flachowsky, Ralf Illgen
  • Patent number: 8580643
    Abstract: When forming sophisticated multiple gate transistors and planar transistors in a common manufacturing sequence, the threshold voltage characteristics of the multiple gate transistors may be intentionally “degraded” by selectively incorporating a dopant species into corner areas of the semiconductor fins, thereby obtaining a superior adaptation of the threshold voltage characteristics of multiple gate transistors and planar transistors. In advantageous embodiments, the incorporation of the dopant species may be accomplished by using the hard mask, which is also used for patterning the self-aligned semiconductor fins.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: November 12, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Tim Baldauf, Andy Wei, Tom Herrmann, Stefan Flachowsky, Ralf Illgen
  • Publication number: 20130277746
    Abstract: Methods for forming integrated circuits and integrated circuits are disclosed. The integrated circuits comprise gate structures overlying and transverse to one or more fins that are delineated by trenches formed in a semiconductor substrate. Protruding portions are formed in the trenches in between the gate electrode structure on exposed sidewall surfaces of the one or more fins. The trenches are filled with an insulating material between the protruding portions and the gate structures.
    Type: Application
    Filed: April 24, 2012
    Publication date: October 24, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Tim Baldauf, Tom Herrmann, Stefan Flachowsky, Ralf Illgen
  • Publication number: 20130230948
    Abstract: Disclosed herein is a multiple step implantation process to form source/drain regions in semiconductor devices. In one example, the method involves performing an extension implant process to form extension implant regions in a semiconducting substrate comprising a buried insulation layer, forming a patterned mask layer above the substrate and performing at least two source/drain ion implant processes through the patterned mask layer to form doped source/drain implant regions in the substrate, wherein one of the at least two source/drain ion implant processes is performed with a dopant dose that is less than a dopant dose used in another of the at least two source/drain ion implant processes. In further embodiments, one of the at least two source/drain ion implant processes is performed at an implant energy level that is greater than an implant energy level used in another of the at least two source/drain ion implantation processes.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 5, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Thilo Scheiper, Tom Herrmann
  • Publication number: 20130181299
    Abstract: In a three-dimensional transistor configuration, a strain-inducing isolation material is provided, at least in the drain and source areas, thereby inducing a strain, in particular at and in the vicinity of the PN junctions of the three-dimensional transistor. In this case, superior transistor performance may be achieved, while in some illustrative embodiments even the same type of internally stressed isolation material may result in superior transistor performance of P-channel transistors and N-channel transistors.
    Type: Application
    Filed: January 13, 2012
    Publication date: July 18, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Tim Baldauf, Andy Wei, Tom Herrmann, Stefan Flachowsky, Ralf Illgen
  • Publication number: 20130049121
    Abstract: When forming sophisticated multiple gate transistors and planar transistors in a common manufacturing sequence, the threshold voltage characteristics of the multiple gate transistors may be intentionally “degraded” by selectively incorporating a dopant species into corner areas of the semiconductor fins, thereby obtaining a superior adaptation of the threshold voltage characteristics of multiple gate transistors and planar transistors. In advantageous embodiments, the incorporation of the dopant species may be accomplished by using the hard mask, which is also used for patterning the self-aligned semiconductor fins.
    Type: Application
    Filed: August 24, 2011
    Publication date: February 28, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Tim Baldauf, Andy Wei, Tom Herrmann, Stefan Flachowsky, Ralf Illgen
  • Publication number: 20120261725
    Abstract: Generally, the present disclosure is directed to methods of stabilizing metal silicide contact regions formed in a silicon-germanium active area of a semiconductor device, and devices comprising stabilized metal silicides. One illustrative method disclosed herein includes performing an activation anneal to activate dopants implanted in an active area of a semiconductor device, wherein the active area comprises germanium. Additionally, the method includes, among other things, performing an ion implantation process to implant ions into the active area after performing the activation anneal, forming a metal silicide contact region in the active area, and forming a conductive contact element to the metal silicide contact region.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 18, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Stefan Flachowsky, Clemens Fitz, Tom Herrmann