Patents by Inventor Tom J. John

Tom J. John has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240130132
    Abstract: An electronic device comprising a lower deck and an upper deck adjacent to a source. Each of the lower deck and the upper deck comprise tiers of alternating conductive materials and dielectric materials. Each of the lower deck and the upper deck also comprise an array region and one or more non-array regions. Memory pillars are in the lower deck and the upper deck of the array region and the memory pillars are configured to be operably coupled to the source. Dummy pillars are in the upper deck of the one or more non-array regions and the dummy pillars are configured to be electrically isolated from the source. Another conductive material is in the upper deck and the lower deck of the one or more non-array regions. Additional electronic devices and related systems and methods of forming an electronic device are also disclosed.
    Type: Application
    Filed: December 20, 2023
    Publication date: April 18, 2024
    Inventors: S M Istiaque Hossain, Christopher J. Larsen, Anikumar Chandolu, Wesley O. Mckinsey, Tom J. John, Arun Kumar Dhayalan, Prakash Rau Mokhna Rau
  • Patent number: 11871575
    Abstract: An electronic device comprising a lower deck and an upper deck adjacent to a source. Each of the lower deck and the upper deck comprise tiers of alternating conductive materials and dielectric materials. Each of the lower deck and the upper deck also comprise an array region and one or more non-array regions. Memory pillars are in the lower deck and the upper deck of the array region and the memory pillars are configured to be operably coupled to the source. Dummy pillars are in the upper deck of the one or more non-array regions and the dummy pillars are configured to be electrically isolated from the source. Another conductive material is in the upper deck and the lower deck of the one or more non-array regions. Additional electronic devices and related systems and methods of forming an electronic device are also disclosed.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: January 9, 2024
    Assignee: Micron Technology, Inc.
    Inventors: S M Istiaque Hossain, Christopher J. Larsen, Anilkumar Chandolu, Wesley O. McKinsey, Tom J. John, Arun Kumar Dhayalan, Prakash Rau Mokhna Rau
  • Publication number: 20230345721
    Abstract: A microelectronic device includes tiers of alternating dielectric and conductive materials, a cap oxide material vertically adjacent to the tiers, and pillars extending vertically through the tiers. The cap oxide material is formulated to exhibit a different etch rate relative to an etch rate of the oxide material of the tiers. Additional microelectronic devices, microelectronic systems, and methods of forming a microelectronic device are also disclosed.
    Type: Application
    Filed: April 26, 2022
    Publication date: October 26, 2023
    Inventors: Frank Speetjens, Yucheng Wang, Brendan Flynn, S M Istiaque Hossain, Tom J. John, Jeremy Adams
  • Publication number: 20230335439
    Abstract: A microelectronic device comprises a stack structure comprising alternating conductive structures and insulative structures. Memory cells vertically extend through the stack structure, and comprise a channel material vertically extending through the stack structure. An additional stack structure vertically overlies the stack structure and comprises additional conductive structures and additional insulative structures. First pillar structures extend through the additional stack structure and vertically overlie a portion of the memory cells. Second pillar structures are adjacent to the first pillar structures and extend through the additional stack structure and vertically overlie another portion of the memory cells. Slot structures are laterally adjacent to the first pillar structures and to the second pillar structures and extend through at least a portion of the additional stack structure.
    Type: Application
    Filed: April 14, 2022
    Publication date: October 19, 2023
    Inventors: Chandra S. Tiwari, David A. Kewley, Deep Panjwani, Matthew Holland, Matthew J. King, Michael E. Koltonski, Tom J. John, Xiaosong Zhang, Yi Hu
  • Publication number: 20230209827
    Abstract: In some embodiments, a memory array comprising strings of memory cells comprise laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Operative channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. Insulative pillars are laterally-between and longitudinally-along immediately-laterally-adjacent of the memory blocks. The pillars comprise vertically-spaced and radially-projecting insulative rings in the conductive tiers as compared to the insulative tiers. Other embodiments, including methods, are disclosed.
    Type: Application
    Filed: March 3, 2023
    Publication date: June 29, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Xiaosong Zhang, Yi Hu, Tom J. John, Wei Yeeng Ng, Chandra Tiwari
  • Patent number: 11626423
    Abstract: In some embodiments, a memory array comprising strings of memory cells comprise laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Operative channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. Insulative pillars are laterally-between and longitudinally-along immediately-laterally-adjacent of the memory blocks. The pillars comprise vertically-spaced and radially-projecting insulative rings in the conductive tiers as compared to the insulative tiers. Other embodiments, including methods, are disclosed.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: April 11, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Xiaosong Zhang, Yi Hu, Tom J. John, Wei Yeeng Ng, Chandra Tiwari
  • Patent number: 11600494
    Abstract: A method used in forming an array of elevationally-extending strings of memory cells comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. The stack comprises an etch-stop tier between a first tier and a second tier of the stack. The etch-stop tier is of different composition from those of the insulative tiers and the wordline tiers. Etching is conducted into the insulative tiers and the wordline tiers that are above the etch-stop tier to the etch-stop tier to form channel openings that have individual bases comprising the etch-stop tier. The etch-stop tier is penetrated through to extend individual of the channel openings there-through. After extending the individual channel openings through the etch-stop tier, etching is conducted into and through the insulative tiers and the wordline tiers that are below the etch-stop tier to extend the individual channel openings deeper into the stack below the etch-stop tier.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: March 7, 2023
    Assignee: Micron Technology, Inc.
    Inventors: John D. Hopkins, Gordon A. Haller, Tom J. John, Anish A. Khandekar, Christopher Larsen, Kunal Shrotri
  • Publication number: 20230017241
    Abstract: An electronic device comprising lower and upper decks adjacent to a source. The lower and upper decks comprise tiers of alternating conductive materials and dielectric materials. Memory pillars in the lower and upper decks are configured to be operably coupled to the source. The memory pillars comprise contact plugs in the upper deck, cell films in the lower and upper decks, and fill materials in the lower and upper decks. The cell films in the upper deck are adjacent to the contact plugs and the fill materials in the upper deck are adjacent to the contact plugs. Dummy pillars are in a central region of the lower deck and the upper deck. The dummy pillars comprise an oxide material in the upper deck, the oxide material contacting the contact plugs and the fill materials. Additional electronic devices and related systems and methods are also disclosed.
    Type: Application
    Filed: September 19, 2022
    Publication date: January 19, 2023
    Inventors: S M Istiaque Hossain, Tom J. John, Darwin A. Clampitt, Anilkumar Chandolu, Prakash Rau Mokhna Rau, Christopher J. Larsen, Kye Hyun Baek
  • Patent number: 11482536
    Abstract: An electronic device comprising lower and upper decks adjacent to a source. The lower and upper decks comprise tiers of alternating conductive materials and dielectric materials. Memory pillars in the lower and upper decks are configured to be operably coupled to the source. The memory pillars comprise contact plugs in the upper deck, cell films in the lower and upper decks, and fill materials in the lower and upper decks. The cell films in the upper deck are adjacent to the contact plugs and the fill materials in the upper deck are adjacent to the contact plugs. Dummy pillars are in a central region of the lower deck and the upper deck. The dummy pillars comprise an oxide material in the upper deck, the oxide material contacting the contact plugs and the fill materials. Additional electronic devices and related systems and methods are also disclosed.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: October 25, 2022
    Assignee: Micron Technology, Inc.
    Inventors: S M Istiaque Hossain, Tom J. John, Darwin A. Clampitt, Anilkumar Chandolu, Prakash Rau Mokhna Rau, Christopher J. Larsen, Kye Hyun Baek
  • Publication number: 20220310632
    Abstract: An electronic device comprising a lower deck and an upper deck adjacent to a source. Each of the lower deck and the upper deck comprise tiers of alternating conductive materials and dielectric materials. Each of the lower deck and the upper deck also comprise an array region and one or more non-array regions. Memory pillars are in the lower deck and the upper deck of the array region and the memory pillars are configured to be operably coupled to the source. Dummy pillars are in the upper deck of the one or more non-array regions and the dummy pillars are configured to be electrically isolated from the source. Another conductive material is in the upper deck and the lower deck of the one or more non-array regions. Additional electronic devices and related systems and methods of forming an electronic device are also disclosed.
    Type: Application
    Filed: June 14, 2022
    Publication date: September 29, 2022
    Inventors: S M Istiaque Hossain, Christopher J. Larsen, Anilkumar Chandolu, Wesley O. Mckinsey, Tom J. John, Arun Kumar Dhayalan, Prakash Rau Mokhna Rau
  • Patent number: 11387245
    Abstract: An electronic device comprising a lower deck and an upper deck adjacent to a source. Each of the lower deck and the upper deck comprise tiers of alternating conductive materials and dielectric materials. Each of the lower deck and the upper deck also comprise an array region and one or more non-array regions. Memory pillars are in the lower deck and the upper deck of the array region and the memory pillars are configured to be operably coupled to the source. Dummy pillars are in the upper deck of the one or more non-array regions and the dummy pillars are configured to be electrically isolated from the source. Another conductive material is in the upper deck and the lower deck of the one or more non-array regions. Additional electronic devices and related systems and methods of forming an electronic device are also disclosed.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: July 12, 2022
    Assignee: Micron Technology, Inc.
    Inventors: S M Istiaque Hossain, Christopher J. Larsen, Anilkumar Chandolu, Wesley O. McKinsey, Tom J. John, Arun Kumar Dhayalan, Prakash Rau Mokhna Rau
  • Publication number: 20220028881
    Abstract: An electronic device comprising lower and upper decks adjacent to a source. The lower and upper decks comprise tiers of alternating conductive materials and dielectric materials. Memory pillars in the lower and upper decks are configured to be operably coupled to the source. The memory pillars comprise contact plugs in the upper deck, cell films in the lower and upper decks, and fill materials in the lower and upper decks. The cell films in the upper deck are adjacent to the contact plugs and the fill materials in the upper deck are adjacent to the contact plugs. Dummy pillars are in a central region of the lower deck and the upper deck. The dummy pillars comprise an oxide material in the upper deck, the oxide material contacting the contact plugs and the fill materials. Additional electronic devices and related systems and methods are also disclosed.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 27, 2022
    Inventors: S M Istiaque Hossain, Tom J. John, Darwin A. Clampitt, Anilkumar Chandolu, Prakash Rau Mokhna Rau, Christopher J. Larsen, Kye Hyun Baek
  • Publication number: 20210399012
    Abstract: In some embodiments, a memory array comprising strings of memory cells comprise laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Operative channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. Insulative pillars are laterally-between and longitudinally-along immediately-laterally-adjacent of the memory blocks. The pillars comprise vertically-spaced and radially-projecting insulative rings in the conductive tiers as compared to the insulative tiers. Other embodiments, including methods, are disclosed.
    Type: Application
    Filed: July 12, 2021
    Publication date: December 23, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Xiaosong Zhang, Yi Hu, Tom J. John, Wei Yeeng Ng, Chandra Twari
  • Publication number: 20210327885
    Abstract: An electronic device comprising a lower deck and an upper deck adjacent to a source. Each of the lower deck and the upper deck comprise tiers of alternating conductive materials and dielectric materials. Each of the lower deck and the upper deck also comprise an array region and one or more non-array regions. Memory pillars are in the lower deck and the upper deck of the array region and the memory pillars are configured to be operably coupled to the source. Dummy pillars are in the upper deck of the one or more non-array regions and the dummy pillars are configured to be electrically isolated from the source. Another conductive material is in the upper deck and the lower deck of the one or more non-array regions. Additional electronic devices and related systems and methods of forming an electronic device are also disclosed.
    Type: Application
    Filed: April 17, 2020
    Publication date: October 21, 2021
    Inventors: S M Istiaque Hossain, Christopher J. Larsen, Anilkumar Chandolu, Wesley O. McKinsey, Tom J. John, Arun Kumar Dhayalan, Prakash Rau Mokhna Rau
  • Publication number: 20210265171
    Abstract: A method used in forming an array of elevationally-extending strings of memory cells comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. The stack comprises an etch-stop tier between a first tier and a second tier of the stack. The etch-stop tier is of different composition from those of the insulative tiers and the wordline tiers. Etching is conducted into the insulative tiers and the wordline tiers that are above the etch-stop tier to the etch-stop tier to form channel openings that have individual bases comprising the etch-stop tier. The etch-stop tier is penetrated through to extend individual of the channel openings there-through. After extending the individual channel openings through the etch-stop tier, etching is conducted into and through the insulative tiers and the wordline tiers that are below the etch-stop tier to extend the individual channel openings deeper into the stack below the etch-stop tier.
    Type: Application
    Filed: May 12, 2021
    Publication date: August 26, 2021
    Applicant: Micron Technology, Inc.
    Inventors: John D. Hopkins, Gordon A. Haller, Tom J. John, Anish A. Khandekar, Christopher Larsen, Kunal Shrotri
  • Patent number: 11075219
    Abstract: In some embodiments, a memory array comprising strings of memory cells comprise laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Operative channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. Insulative pillars are laterally-between and longitudinally-along immediately-laterally-adjacent of the memory blocks. The pillars comprise vertically-spaced and radially-projecting insulative rings in the conductive tiers as compared to the insulative tiers. Other embodiments, including methods, are disclosed.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: July 27, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Xiaosong Zhang, Yi Hu, Tom J. John, Wei Yeeng Ng, Chandra Tiwari
  • Patent number: 11037797
    Abstract: A method used in forming an array of elevationally-extending strings of memory cells comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. The stack comprises an etch-stop tier between a first tier and a second tier of the stack. The etch-stop tier is of different composition from those of the insulative tiers and the wordline tiers. Etching is conducted into the insulative tiers and the wordline tiers that are above the etch-stop tier to the etch-stop tier to form channel openings that have individual bases comprising the etch-stop tier. The etch-stop tier is penetrated through to extend individual of the channel openings there-through. After extending the individual channel openings through the etch-stop tier, etching is conducted into and through the insulative tiers and the wordline tiers that are below the etch-stop tier to extend the individual channel openings deeper into the stack below the etch-stop tier.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: June 15, 2021
    Assignee: Micron Technology, Inc.
    Inventors: John D. Hopkins, Gordon A. Haller, Tom J. John, Anish A. Khandekar, Christopher Larsen, Kunal Shrotri
  • Publication number: 20210057433
    Abstract: In some embodiments, a memory array comprising strings of memory cells comprise laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Operative channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. Insulative pillars are laterally-between and longitudinally-along immediately-laterally-adjacent of the memory blocks. The pillars comprise vertically-spaced and radially-projecting insulative rings in the conductive tiers as compared to the insulative tiers. Other embodiments, including methods, are disclosed.
    Type: Application
    Filed: August 20, 2019
    Publication date: February 25, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Xiaosong Zhang, Yi Hu, Tom J. John, Wei Yeeng Ng, Chandra Tiwari
  • Publication number: 20200251347
    Abstract: A method used in forming an array of elevationally-extending strings of memory cells comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. The stack comprises an etch-stop tier between a first tier and a second tier of the stack. The etch-stop tier is of different composition from those of the insulative tiers and the wordline tiers. Etching is conducted into the insulative tiers and the wordline tiers that are above the etch-stop tier to the etch-stop tier to form channel openings that have individual bases comprising the etch-stop tier. The etch-stop tier is penetrated through to extend individual of the channel openings there-through. After extending the individual channel openings through the etch-stop tier, etching is conducted into and through the insulative tiers and the wordline tiers that are below the etch-stop tier to extend the individual channel openings deeper into the stack below the etch-stop tier.
    Type: Application
    Filed: April 21, 2020
    Publication date: August 6, 2020
    Applicant: Micron Technology, Inc.
    Inventors: John D. Hopkins, Gordon A. Haller, Tom J. John, Anish A. Khandekar, Christopher Larsen, Kunal Shrotri
  • Patent number: 10665469
    Abstract: A method used in forming an array of elevationally-extending strings of memory cells comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. The stack comprises an etch-stop tier between a first tier and a second tier of the stack. The etch-stop tier is of different composition from those of the insulative tiers and the wordline tiers. Etching is conducted into the insulative tiers and the wordline tiers that are above the etch-stop tier to the etch-stop tier to form channel openings that have individual bases comprising the etch-stop tier. The etch-stop tier is penetrated through to extend individual of the channel openings there-through. After extending the individual channel openings through the etch-stop tier, etching is conducted into and through the insulative tiers and the wordline tiers that are below the etch-stop tier to extend the individual channel openings deeper into the stack below the etch-stop tier.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: May 26, 2020
    Assignee: Micron Technology, Inc.
    Inventors: John D. Hopkins, Gordon A. Haller, Tom J. John, Anish A. Khandekar, Christopher Larsen, Kunal Shrotri