Patents by Inventor Tom Kusic
Tom Kusic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20120312917Abstract: A vertical take-off aircraft comprising a main propeller 1 at the top of the aircraft which consists of an assembly of blades 2, 3, and a rotor 4. A drive assembly 5 rotates the propeller. The drive assembly comprises a power plant 5a. The drive assembly is connected to the main body 6 of the aircraft by a tilt enabling joint 7. The tilt enabling joint is connected to the main body by a telescopic tube assembly comprising tubes 12 and 13. To counter the rotational force exerted on the main body 6 of the aircraft by the rotation of the blades 2, 3, an additional power plant 15 is attached to the drive assembly. Tilting the drive assembly causes tilting of the additional power plant.Type: ApplicationFiled: June 4, 2012Publication date: December 13, 2012Inventor: Tom Kusic
-
Patent number: 8196854Abstract: A vertical take-off aircraft comprising a main power plant 1 at the top of the aircraft which consists of an assembly of blades 2, 3, a rotor 4 and a main engine assembly 5. The main power plant is connected to the main body 6 of the aircraft by a tilt enabling joint 7. The tilt enabling joint is connected to the main body by a telescopic tube assembly comprising tubes 12 and 13. To counter the rotational force exerted on the main body 6 of the aircraft by the rotation of the blades 2, 3, an additional power plant 15 is attached to the main power plant. Tilting the main power plant causes tilting of the additional power plant.Type: GrantFiled: April 21, 2011Date of Patent: June 12, 2012Inventor: Tom Kusic
-
Patent number: 8091825Abstract: An aircraft with a long body 1 which has a forward end 2 and an aft end 3, which is able to achieve vertical take-off by means of a tilt-able rotor and blade assembly 4 at the forward part of the aircraft and a tilt-able turbojet 19 at the rear of the aircraft. The rotor and blade assembly is rotated by an engine assembly 8, with the engine assembly, the rotor and blades all positioned on top a multi-directional tilt enabling joint 9. The turbojet is fitted to a multi-directional tilt enabling joint 27 to allow control of lateral movement of the aircraft as well as providing vertical lift and forward propulsion during forward flight. The turbojet is connected to the tilt enabling joint 27 by a rivet 30 such that the turbojet can be rotated relative to the tilt enabling joint.Type: GrantFiled: September 28, 2009Date of Patent: January 10, 2012Inventor: Tom Kusic
-
Patent number: 8042762Abstract: A vertical take-off aircraft having a main power plant at the top of the aircraft to provide lift and an additional power plant to force air to travel in a horizontal direction to counteract the rotational force exerted on the main body of the aircraft by the main power plant. The additional power plant is connected to the aircraft such that tilting of the main power plant relative to the main body of the aircraft is able to cause the additional power plant to move relative to the main body of the aircraft.Type: GrantFiled: October 28, 2009Date of Patent: October 25, 2011Inventor: Tom Kusic
-
Publication number: 20110210212Abstract: A vertical take-off aircraft comprising a main power plant 1 at the top of the aircraft which consists of an assembly of blades 2, 3, a rotor 4 and a main engine assembly 5. The main power plant is connected to the main body 6 of the aircraft by a tilt enabling joint 7. The tilt enabling joint is connected to the main body by a telescopic tube assembly comprising tubes 12 and 13. To counter the rotational force exerted on the main body 6 of the aircraft by the rotation of the blades 2, 3, an additional power plant 15 is attached to the main power plant. Tilting the main power plant causes tilting of the additional power plant.Type: ApplicationFiled: April 21, 2011Publication date: September 1, 2011Inventor: Tom Kusic
-
Patent number: 7992820Abstract: An aircraft with a long body 1 which has a forward end 2 and an aft end 3, which is able to achieve vertical take-off by means of a tilt-able rotor and blade assembly 4 at the forward part of the aircraft and a tilt-able turbojet 19 at the rear of the aircraft. The rotor and blade assembly is rotated by an engine assembly 8, with the engine assembly, the rotor and blades all positioned on top a multi-directional tilt enabling joint 9. The turbojet is fitted to a multi-directional tilt enabling joint 27 to allow control of lateral movement of the aircraft as well as providing vertical lift and forward propulsion during forward flight. The turbojet is connected to the tilt enabling joint 27 by a rivet 30 such that the turbojet can be rotated relative to the tilt enabling joint.Type: GrantFiled: March 15, 2010Date of Patent: August 9, 2011Inventor: Tom Kusic
-
Patent number: 7825359Abstract: An aircraft in the form of multi-stage missile 1 with a spiral inducing assembly 2 which is capable of inducing the missile to travel in a continuous spiraling motion without the missile rolling. A ramjet 6b is attached to a tube 3 that is able to rotate around the encircled part of the fuselage. The ramjet 6b is able to rotate in a pivoting manner on the rotate-able tube 3 with respect to the rotate-able tube 3, thereby changing their pitch relative to the longitudinal axis of the rotate-able tube 3. Ramjet 6b is rotated to a greater than another ramjet on the right side of the tube 3. The difference in degree of rotation between the ramjets makes the ramjet 6b exert a greater force on the rotate-able tube 3 than the ramjet on the right side when the ramjets are rotated in the same direction. The imbalance between the rotational forces thus causes the rotate-able tube 3 to rotate. When rotated, the ramjets would exert a lateral force on the rotate-able tube 3.Type: GrantFiled: July 17, 2009Date of Patent: November 2, 2010Inventor: Tom Kusic
-
Publication number: 20100264255Abstract: An aircraft comprising a main propeller 1 at the top of the aircraft which consists of an assembly of blades 2, 3, a rotor 4. The propeller is rotated by a main power plant 5. The main power plant is connected to the main body 6 of the aircraft by a tilt enabling joint 7. The tilt enabling joint allows tilting of the main power plant 5 and propeller relative to the main body 6 of the aircraft to occur in a controlled manner during flight. To counter the rotational force exerted on the main body 6 of the aircraft by the rotation of the blades 2, 3, an additional power plant is attached to aircraft which comprises an additional propeller which is rotated by an additional engine assembly 16. The additional propeller is a rotor and blade assembly consisting of blades 17 and 18, and a rotor 19. Rotation of the additional propeller pushes air in a primarily horizontal direction by way of the pitch of the blades 17 and 18.Type: ApplicationFiled: June 28, 2010Publication date: October 21, 2010Inventor: Tom Kusic
-
Patent number: 7812294Abstract: An aircraft in the form of multi-stage missile 1 with a spiral inducing assembly 2 which is capable of inducing the missile to travel in a continuous spiraling motion without the missile rolling. A ramjet 6b is attached to a tube 3 that is able to rotate around the encircled part of the fuselage. The ramjet 6b is able to rotate in a pivoting manner on the rotate-able tube 3 with respect to the rotate-able tube 3, thereby changing their pitch relative to the longitudinal axis of the rotate-able tube 3. Ramjet 6b is rotated to a greater than another ramjet on the right side of the tube 3. The difference in degree of rotation between the ramjets makes the ramjet 6b exert a greater force on the rotate-able tube 3 than the ramjet on the right side when the ramjets are rotated in the same direction. The imbalance between the rotational forces thus causes the rotate-able tube 3 to rotate. When rotated, the ramjets would exert a lateral force on the rotate-able tube 3.Type: GrantFiled: July 20, 2009Date of Patent: October 12, 2010Inventor: Tom Kusic
-
Patent number: 7800033Abstract: An aircraft in the form of multi-stage missile 1 with a spiral inducing assembly 2 which is capable of inducing the missile to travel in a continuous spiraling motion without the missile rolling. A fin 6a is attached to a tube 3 that is able to rotate around the encircled part of the fuselage. The fin 6a is able to rotate in a pivoting manner on the rotate-able tube 3 with respect to the rotate-able tube 3, thereby changing the pitch relative to the longitudinal axis of the rotate-able tube 3. Fin 6a is rotated to a greater than another fin on the right side of the tube 3. The difference in degree of rotation between the fins makes the fin 6a exert a greater force on the rotate-able tube 3 than the fin on the right side when the fins are rotated in the same direction. The imbalance between the rotational forces thus causes the rotate-able tube 3 to rotate. When rotated, the fins would exert a lateral force on the rotate-able tube 3.Type: GrantFiled: December 11, 2009Date of Patent: September 21, 2010Inventor: Tom Kusic
-
Patent number: 7753310Abstract: An aircraft with a long body 1 which has a forward end 2 and an aft end 3, which is able to achieve vertical take-off by means of a tilt-able rotor and blade assembly 4 at the forward part of the aircraft and a tilt-able turbojet 19 at the rear of the aircraft. The rotor and blade assembly is rotated by an engine assembly 8, with the engine assembly, the rotor and blades all positioned on top a multi-directional tilt enabling joint 9. The turbojet is fitted to a multi-directional tilt enabling joint 27 to allow control of lateral movement of the aircraft as well as providing vertical lift and forward propulsion during forward flight. The turbojet is connected to the tilt enabling joint 27 by a rivet 30 such that the turbojet can be rotated relative to the tilt enabling joint.Type: GrantFiled: October 23, 2006Date of Patent: July 13, 2010Inventor: Tom Kusic
-
Publication number: 20100171000Abstract: An aircraft with a long body 1 which has a forward end 2 and an aft end 3, which is able to achieve vertical take-off by means of a tilt-able rotor and blade assembly 4 at the forward part of the aircraft and a tilt-able turbojet 19 at the rear of the aircraft. The rotor and blade assembly is rotated by an engine assembly 8, with the engine assembly, the rotor and blades all positioned on top a multi-directional tilt enabling joint 9. The turbojet is fitted to a multi-directional tilt enabling joint 27 to allow control of lateral movement of the aircraft as well as providing vertical lift and forward propulsion during forward flight. The turbojet is connected to the tilt enabling joint 27 by a rivet 30 such that the turbojet can be rotated relative to the tilt enabling joint.Type: ApplicationFiled: March 15, 2010Publication date: July 8, 2010Inventor: Tom Kusic
-
Publication number: 20100123038Abstract: An aircraft in the form of multi-stage missile 1 with a spiral inducing assembly 2 which is capable of inducing the missile to travel in a continuous spiraling motion without the missile rolling. A ramjet 6b is attached to a tube 3 that is able to rotate around the encircled part of the fuselage. The ramjet 6b is able to rotate in a pivoting manner on the rotate-able tube 3 with respect to the rotate-able tube 3, thereby changing their pitch relative to the longitudinal axis of the rotate-able tube 3. Ramjet 6b is rotated to a greater than another ramjet on the right side of the tube 3. The difference in degree of rotation between the ramjets makes the ramjet 6b exert a greater force on the rotate-able tube 3 than the ramjet on the right side when the ramjets are rotated in the same direction. The imbalance between the rotational forces thus causes the rotate-able tube 3 to rotate. When rotated, the ramjets would exert a lateral force on the rotate-able tube 3.Type: ApplicationFiled: July 17, 2009Publication date: May 20, 2010Inventor: Tom Kusic
-
Publication number: 20100078523Abstract: An aircraft with a long body 1 which has a forward end 2 and an aft end 3, which is able to achieve vertical take-off by means of a tilt-able rotor and blade assembly 4 at the forward part of the aircraft and a tilt-able turbojet 19 at the rear of the aircraft. The rotor and blade assembly is rotated by an engine assembly 8, with the engine assembly, the rotor and blades all positioned on top a multi-directional tilt enabling joint 9. The turbojet is fitted to a multi-directional tilt enabling joint 27 to allow control of lateral movement of the aircraft as well as providing vertical lift and forward propulsion during forward flight. The turbojet is connected to the tilt enabling joint 27 by a rivet 30 such that the turbojet can be rotated relative to the tilt enabling joint.Type: ApplicationFiled: September 28, 2009Publication date: April 1, 2010Inventor: Tom Kusic
-
Publication number: 20100044497Abstract: A vertical take-off aircraft is disclosed. Looking at the aircraft it can be seen that the aircraft comprises a main power plant 1 at the top of the aircraft which consists of an assembly of blades 2, 3, a rotor 4 and a main engine assembly 5. The main power plant is connected to the main body 6 of the aircraft by a tilt enabling joint 7. The tilt enabling joint 7 allows tilting of the main power plant 1 relative to the main body 6 of the aircraft to occur in a controlled manner during flight. A universal joint 8 is used to allow tilting to occur. The tilt enabling joint 7 is fitted with a combination of hydraulic actuators 9, 10 and springs 11, 12 and 13 that allow the tilting of the tilt enabling joint 7 to be controlled. Tilting of the main power plant 1 thus initiates changes in the direction of travel of the aircraft without the need to change the pitch angles of the blades 2 and 3.Type: ApplicationFiled: October 28, 2009Publication date: February 25, 2010Inventor: Tom Kusic
-
Publication number: 20100001117Abstract: An aircraft 1 with a spiral inducing assembly 2 which is capable of inducing the aircraft to travel in a continuous spiraling motion without the aircraft rolling. A ramjet 6b is attached to a tube 3a that is able to rotate around the encircled part of the fuselage. The ramjet 6b is able to rotate in a pivoting manner on the rotate-able tube 3a with respect to the rotate-able tube 3a, thereby changing their pitch relative to the longitudinal axis of the rotate-able tube 3a. Ramjet 6b is rotated as is another ramjet on the right side of the tube 3a. The rotate-able tube 3a is rotated by means of an electric motor 3b rotating a wheel 3c. The difference in degree of rotation between the ramjets makes the ramjet 6b exert a greater force on the rotate-able tube 3a than the ramjet on the right side when the ramjets are rotated in the same direction. The imbalance between the rotational forces thus causes the rotate-able tube 3a to rotate.Type: ApplicationFiled: November 20, 2006Publication date: January 7, 2010Inventor: Tom Kusic
-
Patent number: 7642491Abstract: An aircraft 1 with a spiral inducing assembly 2 which is capable of inducing the aircraft to travel in a continuous spiraling motion without the aircraft rolling. A ramjet 6b is attached to a tube 3 that is able to rotate around the encircled part of the fuselage. The ramjet 6b is able to rotate in a pivoting manner on the rotate-able tube 3 with respect to the rotate-able tube 3, thereby changing their pitch relative to the longitudinal axis of the rotate-able tube 3. Ramjet 6b is smaller than another ramjet on the right side of the tube 3. The difference in size between the ramjets makes the ramjet 6b exert a weaker force on the rotate-able tube 3 than the ramjet on the right side when the ramjets are rotated in the same direction. The imbalance between the rotational forces thus causes the rotate-able tube 3 to rotate. A fin 6c is also able to cause the rotate-able tube 3 to rotate during flight. When rotated, the ramjets would exert a lateral force on the rotate-able tube 3.Type: GrantFiled: March 19, 2007Date of Patent: January 5, 2010Inventor: Tom Kusic
-
Patent number: 7637453Abstract: An aircraft 1 with a spiral inducing assembly 2 which is capable of inducing the aircraft to travel in a continuous spiraling motion without the aircraft rolling. A ramjet 6b is attached to a tube 3 that is able to rotate around the encircled part of the fuselage. The ramjet 6b is able to rotate in a pivoting manner on the rotate-able tube 3 with respect to the rotate-able tube 3, thereby changing their pitch relative to the longitudinal axis of the rotate-able tube 3. Ramjet 6b is rotated to a greater than another ramjet on the right side of the tube 3. The difference in degree of rotation between the ramjets makes the ramjet 6b exert a greater force on the rotate-able tube 3 than the ramjet on the right side when the ramjets are rotated in the same direction. The imbalance between the rotational forces thus causes the rotate-able tube 3 to rotate. When rotated, the ramjets would exert a lateral force on the rotate-able tube 3.Type: GrantFiled: November 29, 2006Date of Patent: December 29, 2009Inventor: Tom Kusic
-
Patent number: 7635104Abstract: An aircraft 1 with a spiral inducing assembly 2 which is capable of inducing the aircraft to travel in a continuous spiraling motion without the aircraft rolling. A ramjet 6b is attached to a tube 3a that is able to rotate around the encircled part of the fuselage. The ramjet 6b is able to rotate in a pivoting manner on the rotate-able tube 3a with respect to the rotate-able tube 3a, thereby changing their pitch relative to the longitudinal axis of the rotate-able tube 3a. Ramjet 6b is rotated as is another ramjet on the right side of the tube 3a. The rotate-able tube 3a is rotated by means of an electric motor 3b rotating a wheel 3c. The difference in degree of rotation between the ramjets makes the ramjet 6b exert a greater force on the rotate-able tube 3a than the ramjet on the right side when the ramjets are rotated in the same direction. The imbalance between the rotational forces thus causes the rotate-able tube 3a to rotate.Type: GrantFiled: November 20, 2006Date of Patent: December 22, 2009Inventor: Tom Kusic
-
Publication number: 20090277990Abstract: An aircraft in the form of multi-stage missile 1 with a spiral inducing assembly 2 which is capable of inducing the missile to travel in a continuous spiraling motion without the missile rolling. A ramjet 6b is attached to a tube 3 that is able to rotate around the encircled part of the fuselage. The ramjet 6b is able to rotate in a pivoting manner on the rotate-able tube 3 with respect to the rotate-able tube 3, thereby changing their pitch relative to the longitudinal axis of the rotate-able tube 3. Ramjet 6b is rotated to a greater than another ramjet on the right side of the tube 3. The difference in degree of rotation between the ramjets makes the ramjet 6b exert a greater force on the rotate-able tube 3 than the ramjet on the right side when the ramjets are rotated in the same direction. The imbalance between the rotational forces thus causes the rotate-able tube 3 to rotate. When rotated, the ramjets would exert a lateral force on the rotate-able tube 3.Type: ApplicationFiled: July 20, 2009Publication date: November 12, 2009Inventor: Tom Kusic