Patents by Inventor Tom L. Cadwell

Tom L. Cadwell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8486835
    Abstract: Non-production wafers of polycrystalline silicon are placed in non-production slots of a support tower for thermal processing monocrystalline silicon wafers. They may have thicknesses of 0.725 to 2 mm and be roughened on both sides. Nitride may be grown on the non-production wafers to a thickness of over 2 ?m without flaking. The polycrystalline silicon is preferably randomly oriented Czochralski polysilicon grown using a randomly oriented seed, for example, CVD grown silicon. Both sides are ground to introduce sub-surface damage and then oxidized and etch cleaned. An all-silicon hot zone of a thermal furnace, for example, depositing a nitride layer, may include a silicon support tower placed within a silicon liner and supporting the polysilicon non-production wafers with silicon injector tube providing processing gas within the liner.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: July 16, 2013
    Inventors: James E. Boyle, Reese Reynolds, Raanan Y. Zehavi, Tom L. Cadwell, Doris Mytton
  • Patent number: 7972703
    Abstract: Baffle wafers of polycrystalline silicon are placed in non-production slots of a support tower for thermal processing monocrystalline silicon wafers. The polycrystalline silicon is preferably randomly oriented Czochralski polysilicon grown using a randomly oriented seed, for example, CVD grown silicon. An all-silicon hot zone of a thermal furnace may include a silicon support tower placed within a silicon liner and supporting the polysilicon baffle wafers with silicon injector tube providing processing gas within the liner. The randomly oriented polysilicon may be used for other parts requiring a rugged member, for example, within a silicon processing chamber and for structural members.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: July 5, 2011
    Assignee: Ferrotec (USA) Corporation
    Inventors: James E. Boyle, Reese Reynolds, Ranaan Y. Zehavi, Robert W. Mytton, Tom L. Cadwell
  • Patent number: 7736436
    Abstract: An edge ring for use in batch thermal processing of wafers supported on a vertical tower within a furnace. The edge rings are have a width approximately overlapping the periphery of the wafers and are detachably supported on the towers equally spaced between the wafer to reduce thermal edge effects. The edge rings have may have internal or external recesses to interlock with structures on or adjacent the fingers of the tower legs supporting the wafers or one or more steps formed on the lateral sides of the edge ring may slide over and then fall below a locking ledge associated with the support fingers. Preferably, the tower and edge ring and other parts of the furnace adjacent the hot zone are composed of silicon.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: June 15, 2010
    Assignee: Integrated Materials, Incorporated
    Inventors: Tom L. Cadwell, Ranaan Zehavi, Michael Sklyar
  • Patent number: 7736437
    Abstract: A baffled liner cover supported at the top of a liner surrounding a wafer support tower for semiconductor thermal processing. The cover may present a continuous horizontal surface for preventing particles from falling within the liner but present horizontal extending gas passageways in a baffle assembly to allow the flow of processing gas through the cover. In one embodiment, the baffle assembly includes a cup-shaped member disposed in a central aperture of a top plate having an open top, a continuous bottom, horizontal holes through the sides, and a flange around sides defining a convolute annular passage. Alternatively, the planar top plate may included slanted holes therethrough or vertical holes occupying a small fraction of the surface area. The liner and cover may be composed of quartz, silicon carbide, or preferably silicon.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: June 15, 2010
    Assignee: Integrated Materials, Incorporated
    Inventors: Tom L. Cadwell, Michael Sklyar
  • Publication number: 20100009123
    Abstract: Non-production wafers of polycrystalline silicon are placed in non-production slots of a support tower for thermal processing monocrystalline silicon wafers. They may have thicknesses of 0.725 to 2 mm and be roughened on both sides. Nitride may be grown on the non-production wafers to a thickness of over 2 ?m without flaking. The polycrystalline silicon is preferably randomly oriented Czochralski polysilicon grown using a randomly oriented seed, for example, CVD grown silicon. Both sides are ground to introduce sub-surface damage and then oxidized and etch cleaned. An all-silicon hot zone of a thermal furnace, for example, depositing a nitride layer, may include a silicon support tower placed within a silicon liner and supporting the polysilicon non-production wafers with silicon injector tube providing processing gas within the liner.
    Type: Application
    Filed: September 18, 2009
    Publication date: January 14, 2010
    Applicant: INTEGRATED MATERIALS, INC.
    Inventors: James E. Boyle, Reese Reynolds, Raanan Y. Zehavi, Robert W. Mytton, Doris Mytton, Tom L. Cadwell
  • Patent number: 7611989
    Abstract: Non-production wafers of polycrystalline silicon are placed in non-production slots of a support tower for thermal processing monocrystalline silicon wafers. They may have thicknesses of 0.725 to 2 mm and be roughened on both sides. Nitride may be grown on the non-production wafers to a thickness of over 2 ?m without flaking. The polycrystalline silicon is preferably randomly oriented Czochralski polysilicon grown using a randomly oriented seed, for example, CVD grown silicon. Both sides are ground to introduce sub-surface damage and then oxidized and etch cleaned. An all-silicon hot zone of a thermal furnace, for example, depositing a nitride layer, may include a silicon support tower placed within a silicon liner and supporting the polysilicon non-production wafers with silicon injector tube providing processing gas within the liner.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: November 3, 2009
    Assignee: Integrated Materials, Inc.
    Inventors: James E. Boyle, Reese Reynolds, Raanan Y. Zehavi, Robert W. Mytton, Doris Mytton, legal representative, Tom L. Cadwell
  • Publication number: 20080152805
    Abstract: Non-production wafers of polycrystalline silicon are placed in non-production slots of a support tower for thermal processing monocrystalline silicon wafers. They may have thicknesses of 0.725 to 2 mm and be roughened on both sides. Nitride may be grown on the non-production wafers to a thickness of over 2 ?m without flaking. The polycrystalline silicon is preferably randomly oriented Czochralski polysilicon grown using a randomly oriented seed, for example, CVD grown silicon. Both sides are ground to introduce sub-surface damage and then oxidized and etch cleaned. An all-silicon hot zone of a thermal furnace, for example, depositing a nitride layer, may include a silicon support tower placed within a silicon liner and supporting the polysilicon non-production wafers with silicon injector tube providing processing gas within the liner.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 26, 2008
    Applicant: INTEGRATED MATERIALS, INC.
    Inventors: James E. BOYLE, Reese REYNOLDS, Raanan Y. ZEHAVI, Robert W. MYTTON, Tom L. CADWELL, Doris MYTTON
  • Publication number: 20070181066
    Abstract: A baffled liner cover supported at the top of a liner surrounding a wafer support tower for semiconductor thermal processing. The cover may present a continuous horizontal surface for preventing particles from falling within the liner but present horizontal extending gas passageways in a baffle assembly to allow the flow of processing gas through the cover. In one embodiment, the baffle assembly includes a cup-shaped member disposed in a central aperture of a top plate having an open top, a continuous bottom, horizontal holes through the sides, and a flange around sides defining a convolute annular passage. Alternatively, the planar top plate may included slanted holes therethrough or vertical holes occupying a small fraction of the surface area. The liner and cover may be composed of quartz, silicon carbide, or preferably silicon.
    Type: Application
    Filed: October 30, 2006
    Publication date: August 9, 2007
    Applicant: INTEGRATED MATERIALS, INC.
    Inventors: Tom L. Cadwell, Michael Sklyar