Patents by Inventor Tom Lii
Tom Lii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10134731Abstract: A method for forming MOS transistor includes providing a substrate including a semiconductor surface having a gate electrode on a gate dielectric thereon, dielectric spacers on sidewalls of the gate electrode, a source and drain in the semiconductor surface on opposing sides of the gate electrode, and a pre-metal dielectric (PMD) layer over the gate electrode and over the source and drain regions. Contact holes are formed through the PMD layer to form a contact to the gate electrode and contacts to the source and drain. A post contact etch dielectric layer is then deposited on the contacts to source and drain and on sidewalls of the PMD layer. The post contact etch dielectric layer is selectively removed from the contacts to leave a dielectric liner on sidewalls of the PMD layer. A metal silicide layer is formed on the contacts to the source and drain.Type: GrantFiled: April 18, 2017Date of Patent: November 20, 2018Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Tom Lii
-
Patent number: 9741624Abstract: An integrated circuit may be formed by removing source/drain spacers from offset spacers on sidewalls of MOS transistor gates, forming a contact etch stop layer (CESL) spacer layer on lateral surfaces of the MOS transistor gates, etching back the CESL spacer layer to form sloped CESL spacers on the lateral surfaces of the MOS transistor gates with heights of ¼ to ¾ of the MOS transistor gates, forming a CESL over the sloped CESL spacers, the MOS transistor gates and the intervening substrate, and forming a PMD layer over the CESL.Type: GrantFiled: June 27, 2016Date of Patent: August 22, 2017Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Tom Lii
-
Publication number: 20170221895Abstract: A method for forming MOS transistor includes providing a substrate including a semiconductor surface having a gate electrode on a gate dielectric thereon, dielectric spacers on sidewalls of the gate electrode, a source and drain in the semiconductor surface on opposing sides of the gate electrode, and a pre-metal dielectric (PMD) layer over the gate electrode and over the source and drain regions. Contact holes are formed through the PMD layer to form a contact to the gate electrode and contacts to the source and drain. A post contact etch dielectric layer is then deposited on the contacts to source and drain and on sidewalls of the PMD layer. The post contact etch dielectric layer is selectively removed from the contacts to leave a dielectric liner on sidewalls of the PMD layer. A metal silicide layer is formed on the contacts to the source and drain.Type: ApplicationFiled: April 18, 2017Publication date: August 3, 2017Inventor: Tom Lii
-
Patent number: 9704720Abstract: An integrated circuit may be formed by forming a sacrificial silicon nitride feature. At least a portion of the sacrificial silicon nitride feature may be removed by placing the integrated circuit in a two-step oxidized layer etch tool and removing a surface layer of oxidized silicon from the sacrificial silicon nitride feature using a two-step etch process. The two-step etch process exposes the integrated circuits to reactants from a plasma source at a temperature less than 40° C. and subsequently heating the integrated circuit to 80° C. to 120° C. while in the two-step oxidized layer etch tool. While the integrated circuit is in the two-step oxidized layer etch tool, without exposing the integrated circuit to an ambient containing more than 1 torr of oxygen, at least a portion of the sacrificial silicon nitride feature is removed using fluorine-containing etch reagents, substantially free of ammonia.Type: GrantFiled: August 4, 2016Date of Patent: July 11, 2017Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Tom Lii, David Farber
-
Patent number: 9659935Abstract: A method for forming MOS transistor includes providing a substrate including a semiconductor surface having a gate electrode on a gate dielectric thereon, dielectric spacers on sidewalls of the gate electrode, a source and drain in the semiconductor surface on opposing sides of the gate electrode, and a pre-metal dielectric (PMD) layer over the gate electrode and over the source and drain regions. Contact holes are formed through the PMD layer to form a contact to the gate electrode and contacts to the source and drain. A post contact etch dielectric layer is then deposited on the contacts to source and drain and on sidewalls of the PMD layer. The post contact etch dielectric layer is selectively removed from the contacts to leave a dielectric liner on sidewalls of the PMD layer. A metal silicide layer is formed on the contacts to the source and drain.Type: GrantFiled: June 22, 2015Date of Patent: May 23, 2017Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Tom Lii
-
Publication number: 20160343581Abstract: An integrated circuit may be formed by forming a sacrificial silicon nitride feature. At least a portion of the sacrificial silicon nitride feature may be removed by placing the integrated circuit in a two-step oxidized layer etch tool and removing a surface layer of oxidized silicon from the sacrificial silicon nitride feature using a two-step etch process. The two-step etch process exposes the integrated circuits to reactants from a plasma source at a temperature less than 40° C. and subsequently heating the integrated circuit to 80° C. to 120° C. while in the two-step oxidized layer etch tool. While the integrated circuit is in the two-step oxidized layer etch tool, without exposing the integrated circuit to an ambient containing more than 1 torr of oxygen, at least a portion of the sacrificial silicon nitride feature is removed using fluorine-containing etch reagents, substantially free of ammonia.Type: ApplicationFiled: August 4, 2016Publication date: November 24, 2016Inventors: Tom Lii, David Farber
-
Publication number: 20160307808Abstract: An integrated circuit may be formed by removing source/drain spacers from offset spacers on sidewalls of MOS transistor gates, forming a contact etch stop layer (CESL) spacer layer on lateral surfaces of the MOS transistor gates, etching back the CESL spacer layer to form sloped CESL spacers on the lateral surfaces of the MOS transistor gates with heights of ¼ to ¾ of the MOS transistor gates, forming a CESL over the sloped CESL spacers, the MOS transistor gates and the intervening substrate, and forming a PMD layer over the CESL.Type: ApplicationFiled: June 27, 2016Publication date: October 20, 2016Inventor: Tom Lii
-
Patent number: 9437449Abstract: An integrated circuit may be formed by forming a sacrificial silicon nitride feature. At least a portion of the sacrificial silicon nitride feature may be removed by placing the integrated circuit in a two-step oxidized layer etch tool and removing a surface layer of oxidized silicon from the sacrificial silicon nitride feature using a two-step etch process. The two-step etch process exposes the integrated circuits to reactants from a plasma source at a temperature less than 40° C. and subsequently heating the integrated circuit to 80° C. to 120° C. while in the two-step oxidized layer etch tool. While the integrated circuit is in the two-step oxidized layer etch tool, without exposing the integrated circuit to an ambient containing more than 1 torr of oxygen, at least a portion of the sacrificial silicon nitride feature is removed using fluorine-containing etch reagents, substantially free of ammonia.Type: GrantFiled: December 27, 2013Date of Patent: September 6, 2016Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Tom Lii, David Farber
-
Patent number: 9406779Abstract: An integrated circuit may be formed by removing source/drain spacers from offset spacers on sidewalls of MOS transistor gates, forming a contact etch stop layer (CESL) spacer layer on lateral surfaces of the MOS transistor gates, etching back the CESL spacer layer to form sloped CESL spacers on the lateral surfaces of the MOS transistor gates with heights of ¼ to ¾ of the MOS transistor gates, forming a CESL over the sloped CESL spacers, the MOS transistor gates and the intervening substrate, and forming a PMD layer over the CESL.Type: GrantFiled: June 22, 2015Date of Patent: August 2, 2016Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Tom Lii
-
Patent number: 9385044Abstract: An integrated circuit containing metal replacement gates may be formed by forming a CMP stop layer over sacrificial gates, and forming a dielectric fill layer over the CMP stop layer. Dielectric material from the dielectric fill layer is removed from over the sacrificial gates using a CMP process which exposes the CMP stop layer over the sacrificial gates but does not expose the sacrificial gates. The CMP stop layer is removed from over the sacrificial gates using a plasma etch process. In one version, the plasma etch process may be selective to the CMP stop layer. In another version, the plasma etch process may be a non-selective etch process. After the sacrificial gates are exposed by the plasma etch process, the sacrificial gates are removed and the metal replacement gates are formed.Type: GrantFiled: December 27, 2013Date of Patent: July 5, 2016Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Tom Lii
-
Patent number: 9224657Abstract: An integrated circuit is formed to include a first polarity MOS transistor and a second, opposite, polarity MOS transistor. A hard mask of silicon-doped boron nitride (SixBN) with 1 atomic percent to 30 atomic percent silicon is formed over the first polarity MOS transistor and the second polarity MOS transistor. The hard mask is removed from source/drain regions of the first polarity MOS transistor and left in place over the second polarity MOS transistor. Semiconductor material is epitaxially grown at the source/drain regions of the first polarity MOS transistor while the hard mask is in place. Subsequently, the hard mask is removed from the second polarity MOS transistor.Type: GrantFiled: August 6, 2013Date of Patent: December 29, 2015Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: David Gerald Farber, Tom Lii, Brian K. Kirkpatrick
-
Publication number: 20150287804Abstract: An integrated circuit may be formed by removing source/drain spacers from offset spacers on sidewalls of MOS transistor gates, forming a contact etch stop layer (CESL) spacer layer on lateral surfaces of the MOS transistor gates, etching back the CESL spacer layer to form sloped CESL spacers on the lateral surfaces of the MOS transistor gates with heights of ¼ to ¾ of the MOS transistor gates, forming a CESL over the sloped CESL spacers, the MOS transistor gates and the intervening substrate, and forming a PMD layer over the CESL.Type: ApplicationFiled: June 22, 2015Publication date: October 8, 2015Inventor: Tom Lii
-
Publication number: 20150287723Abstract: A method for forming MOS transistor includes providing a substrate including a semiconductor surface having a gate electrode on a gate dielectric thereon, dielectric spacers on sidewalls of the gate electrode, a source and drain in the semiconductor surface on opposing sides of the gate electrode, and a pre-metal dielectric (PMD) layer over the gate electrode and over the source and drain regions. Contact holes are formed through the PMD layer to form a contact to the gate electrode and contacts to the source and drain. A post contact etch dielectric layer is then deposited on the contacts to source and drain and on sidewalls of the PMD layer. The post contact etch dielectric layer is selectively removed from the contacts to leave a dielectric liner on sidewalls of the PMD layer. A metal silicide layer is formed on the contacts to the source and drain.Type: ApplicationFiled: June 22, 2015Publication date: October 8, 2015Inventor: Tom Lii
-
Patent number: 9093380Abstract: A method for forming MOS transistor includes providing a substrate including a semiconductor surface having a gate electrode on a gate dielectric thereon, dielectric spacers on sidewalls of the gate electrode, a source and drain in the semiconductor surface on opposing sides of the gate electrode, and a pre-metal dielectric (PAD) layer over the gate electrode and over the source and drain regions. Contact holes are formed through the PMD layer to form a contact to the gate electrode and contacts to the source and drain. A post contact etch dielectric layer is then deposited on the contacts to source and drain and on sidewalls of the PMD layer. The post contact etch dielectric layer is selectively removed from the contacts to leave a dielectric liner on sidewalls of the PMD layer. A metal silicide layer is formed on the contacts to the source and drain.Type: GrantFiled: June 5, 2013Date of Patent: July 28, 2015Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Tom Lii
-
Patent number: 9093303Abstract: An integrated circuit may be formed by removing source/drain spacers from offset spacers on sidewalls of MOS transistor gates, forming a contact etch stop layer (CESL) spacer layer on lateral surfaces of the MOS transistor gates, etching back the CESL spacer layer to form sloped CESL spacers on the lateral surfaces of the MOS transistor gates with heights of ¼ to ¾ of the MOS transistor gates, forming a CESL over the sloped CESL spacers, the MOS transistor gates and the intervening substrate, and forming a PMD layer over the CESL.Type: GrantFiled: May 31, 2013Date of Patent: July 28, 2015Assignee: TEXAS INSTRUMENTS INCORPORTEDInventor: Tom Lii
-
Publication number: 20150187661Abstract: A process for forming an integrated circuit with an embedded epitaxially grown semiconductor using an epi blocking bilayer. The epi blocking bilayer comprised of a two different materials that may be etched selectively with respect to each other such as silicon nitride and silicon dioxide.Type: ApplicationFiled: December 18, 2014Publication date: July 2, 2015Inventors: Tom Lii, David Farber
-
Patent number: 9054158Abstract: The width of a metal contact opening is formed to be smaller than the minimum feature size of a photolithographically-defined opening. The method forms the metal contact opening by first etching the fourth layer of a multilayered hard mask structure to have a number of trenches that expose the third layer of the multilayered hard mask structure. Following this, the third, second, and first layers of the multilayered hard mask structure are selectively etched to expose uncovered regions on the top surface of an isolation layer that touches and lies over a source region and a drain region. The uncovered regions on the top surface of the isolation layer are then etched to form the metal contact openings.Type: GrantFiled: February 8, 2013Date of Patent: June 9, 2015Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: David Gerald Farber, Tom Lii, Steve Lytle
-
Publication number: 20150044830Abstract: An integrated circuit is formed to include a first polarity MOS transistor and a second, opposite, polarity MOS transistor. A hard mask of silicon-doped boron nitride (SixBN) with 1 atomic percent to 30 atomic percent silicon is formed over the first polarity MOS transistor and the second polarity MOS transistor. The hard mask is removed from source/drain regions of the first polarity MOS transistor and left in place over the second polarity MOS transistor. Semiconductor material is epitaxially grown at the source/drain regions of the first polarity MOS transistor while the hard mask is in place. Subsequently, the hard mask is removed from the second polarity MOS transistor.Type: ApplicationFiled: August 6, 2013Publication date: February 12, 2015Applicant: Texas Instruments IncorporatedInventors: David Gerald Farber, Tom Lii, Brian K. Kirkpatrick
-
Publication number: 20140361376Abstract: A method for forming MOS transistor includes providing a substrate including a semiconductor surface having a gate electrode on a gate dielectric thereon, dielectric spacers on sidewalls of the gate electrode, a source and drain in the semiconductor surface on opposing sides of the gate electrode, and a pre-metal dielectric (PMD) layer over the gate electrode and over the source and drain regions. Contact holes are formed through the PMD layer to form a contact to the gate electrode and contacts to the source and drain. A post contact etch dielectric layer is then deposited on the contacts to source and drain and on sidewalls of the PMD layer. The post contact etch dielectric layer is selectively removed from the contacts to leave a dielectric liner on sidewalls of the PMD layer. A metal silicide layer is formed on the contacts to the source and drain.Type: ApplicationFiled: June 5, 2013Publication date: December 11, 2014Inventor: TOM LII
-
Publication number: 20140227877Abstract: The width of a metal contact opening is formed to be smaller than the minimum feature size of a photolithographically-defined opening. The method forms the metal contact opening by first etching the fourth layer of a multilayered hard mask structure to have a number of trenches that expose the third layer of the multilayered hard mask structure. Following this, the third, second, and first layers of the multilayered hard mask structure are selectively etched to expose uncovered regions on the top surface of an isolation layer that touches and lies over a source region and a drain region. The uncovered regions on the top surface of the isolation layer are then etched to form the metal contact openings.Type: ApplicationFiled: February 8, 2013Publication date: August 14, 2014Applicant: TEXAS INSTRUMENTS INCORPORATEDInventors: David Gerald Farber, Tom Lii, Steve Lytle