Patents by Inventor Tom P. Daigle

Tom P. Daigle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9681911
    Abstract: Device and method for sub-xiphoid ablation of patient tissue. A sub-xiphoid access clamp has a handle, an elongate neck coupled to the handle and first and second opposing jaws. The first and second opposing jaws have first and second opposing relief segments being generally co-planar and concave with respect to one another to form a void therebetween, and first and second opposing elongate ablation elements positioned along the first and second opposing jaws and distal of the first and second opposing relief segments relative to the handle. The first and second opposing jaws are articulate between a closed position and an open position to admit, at least in part, a second portion of tissue of the patient within the void created by the first and second opposing relief segments while the first portion of tissue is positioned between the first and second ablation elements in the closed position.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: June 20, 2017
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Stewart, Tom P. Daigle, David E. Francischelli, John R. Liddicoat, Paul T. Rothstein, Steven F. Bolling
  • Patent number: 8926635
    Abstract: A novel occluder application and clip device for treatment of embolic stroke caused by atrial fibrillation uses multiple sutures in a non directional handle to affix the occlusion device to the applicator and manipulate the occluder from an open and receiving position to a closed and occluding position. The occluder is retained in place by a clamping means related to locks retainers, resilient material or otherwise. An actuator mechanism is used to manipulate the occluder to a locked or occluding position. The applicator with the occluder attached has a low profile and remote manipulations to allow the occluder to be delivered to the clamping location within a patient through a small incision or delivery port such as a trocar cannula or the like.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: January 6, 2015
    Assignee: Medtronic, Inc.
    Inventors: David E. Francischelli, Roderick E. Briscoe, Leonard H. Leuer, Daniel C. Haeg, Tom P. Daigle, David Kim, Mark T. Stewart, Andrew L. Olson, Patrick J. Cloutier, Christopher W. Smith, Michael J. Hobday, Tessy Kanayinkal, Douglas H. Gubbin, Paul T. Rothstein, Joseph E. Cardinal, Jessica L. Foley, Christopher J. Plott
  • Publication number: 20140180003
    Abstract: Device and method for sub-xiphoid ablation of patient tissue. A sub-xiphoid access clamp has a handle, an elongate neck coupled to the handle and first and second opposing jaws. The first and second opposing jaws have first and second opposing relief segments being generally co-planar and concave with respect to one another to form a void therebetween, and first and second opposing elongate ablation elements positioned along the first and second opposing jaws and distal of the first and second opposing relief segments relative to the handle. The first and second opposing jaws are articulate between a closed position and an open position to admit, at least in part, a second portion of tissue of the patient within the void created by the first and second opposing relief segments while the first portion of tissue is positioned between the first and second ablation elements in the closed position.
    Type: Application
    Filed: February 25, 2014
    Publication date: June 26, 2014
    Inventors: Mark T. Stewart, Tom P. Daigle, David E. Francischelli, John R. Liddicoat, Paul T. Rothstein, Steven F. Bolling
  • Patent number: 8702703
    Abstract: Device and method for sub-xiphoid ablation of patient tissue. A sub-xiphoid access clamp has a handle, an elongate neck coupled to the handle and first and second opposing jaws. The first and second opposing jaws have first and second opposing relief segments being generally co-planar and concave with respect to one another to form a void therebetween, and first and second opposing elongate ablation elements positioned along the first and second opposing jaws and distal of the first and second opposing relief segments relative to the handle. The first and second opposing jaws are articulate between a closed position and an open position to admit, at least in part, a second portion of tissue of the patient within the void created by the first and second opposing relief segments while the first portion of tissue is positioned between the first and second ablation elements in the closed position.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: April 22, 2014
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Stewart, Tom P. Daigle, David E. Francischelli, John R. Liddicoat, Paul T. Rothstein, Steven F. Bolling
  • Patent number: 8663245
    Abstract: The invention provides a system for occluding a left atrial appendage of a patient. The system can include a ring occluder that can be positioned around the left atrial appendage and a ring applicator to position the ring occluder with respect to the left atrial appendage. The system can also provide a tissue-grasping tool that is separable from the ring applicator tool.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: March 4, 2014
    Assignee: Medtronic, Inc.
    Inventors: David E. Francischelli, Roderick E. Briscoe, Leonard H. Leuer, Daniel C. Haeg, Tom P. Daigle, David Kim, Mark T. Stewart, Andrew L. Olson, Patrick J. Cloutier, Christopher W. Smith, Michael J. Hobday, Tessy Kanayinkal, Douglas H. Gubbin, Paul T. Rothstein, Joseph E. Cardinal, Jessica L. Foley, Christopher J. Plott
  • Patent number: 8480696
    Abstract: The invention provides a system and method for harvesting a vessel section. The system comprises a vessel support member, a handle, and a tubular cutting device. The vessel support member is introduced into the vessel section to be harvested. The tubular cutting device may comprise an outer tubular member or an outer and an inner tubular member. The outer tubular member carries at least one cutting element. The tubular member or members are advanced over the vessel section and vessel support member to core out the vessel section and tissue adjoining the vessel section.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: July 9, 2013
    Assignee: Medtronic, Inc.
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Jolly, Ana R. Buhr, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Tom P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns
  • Patent number: 8172837
    Abstract: Method and apparatus for ablating target tissue adjacent pulmonary veins of a patient. A clamping ablation tool can include an upper arm having an upper neck, a link assembly, and an upper actuator. The link assembly can include a distal electrode and a proximal electrode. The clamping ablation tool can include a lower arm that mates with the upper arm. The lower arm can include a lower neck, a distal jaw, and a lower actuator. The distal jaw can include a jaw electrode, and the lower actuator can control movement of the distal jaw.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: May 8, 2012
    Assignee: Medtronic, Inc.
    Inventors: Paul T. Rothstein, David E. Francischelli, Terri Jean Cormack, Tom P. Daigle, Alison Lutterman, Roderick E. Briscoe, Steven C. Christian
  • Patent number: 8162941
    Abstract: System, device and method for ablating target tissue adjacent pulmonary veins of a patient through an incision. An ablation device can include a hinge including a cam assembly, a moving arm, a floating jaw, and a lower jaw. Fingers can engage the floating jaw to hold the floating jaw in a first position with respect to the moving arm. Some embodiments of the invention can provide an ablation device including a central support, an upper four-bar linkage coupled to the central support, an upper jaw coupled to the upper linkage, a lower four-bar linkage coupled to the central support, and a lower jaw coupled to the lower linkage. Some embodiments of the invention can provide an ablation device having an upper jaw including a first cannula connection and a lower jaw including a second cannula connection. The system can include a first catheter coupled to the first cannula connection and a second catheter coupled to the second cannula connection.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: April 24, 2012
    Assignee: Medtronic, Inc.
    Inventors: Steven C. Christian, Paul T. Rothstein, Tom P. Daigle
  • Patent number: 8025620
    Abstract: Tissue stabilizers including a clamp assembly, a turret assembly, an articulating arm having a tension element extending therethrough, a collet assembly and a head-link assembly are disclosed. Methods of stabilizing tissue are also disclosed.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: September 27, 2011
    Assignee: Medtronic, Inc.
    Inventors: Andrew L. Olson, Michael J. Hobday, Steven C. Christian, Tom P. Daigle, Robert H. Reetz, Douglas H. Gubbin, Roderick E. Briscoe, William A. Steinberg, Adam A. Podbelski, Christopher J. Plott, Patrick J. Cloutier, Gerard C. Forest, Christopher P. Olig
  • Patent number: 7963963
    Abstract: A hemostat-type device for ablative treatment of tissue, particularly for treatment of atrial fibrillation, is constructed with features that provide easy and effective treatment. The device may include a swiveling head assembly that allows the jaws to be adjusted in pitch and/or roll. The device may include a malleable or articulating handle shaft, as well as, malleable or curved rigid jaws that can permit curved lesion shapes. A locking detent can secure the jaws in a closed position during the procedure. The device may include one or more remote actuators making the hemostat-type device useful for minimally invasive procedures.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: June 21, 2011
    Assignee: Medtronic, Inc.
    Inventors: David E. Francischelli, Roderick E. Briscoe, Paul T. Rothstein, David Jin Sung Kim, James R. Keogh, Tom P. Daigle, Adam A. Podbeliski, Stephen J. Roddy, Steve Christian, Brian Ross, James Skarda, Scott E. Jahns, Alison Lutterman
  • Publication number: 20110087205
    Abstract: System, device and method for ablating target tissue adjacent pulmonary veins of a patient through an incision. An ablation device can include a hinge including a cam assembly, a moving arm, a floating jaw, and a lower jaw. Fingers can engage the floating jaw to hold the floating jaw in a first position with respect to the moving arm. Some embodiments of the invention can provide an ablation device including a central support, an upper four-bar linkage coupled to the central support, an upper jaw coupled to the upper linkage, a lower four-bar linkage coupled to the central support, and a lower jaw coupled to the lower linkage. Some embodiments of the invention can provide an ablation device having an upper jaw including a first cannula connection and a lower jaw including a second cannula connection. The system can include a first catheter coupled to the first cannula connection and a second catheter coupled to the second cannula connection.
    Type: Application
    Filed: December 20, 2010
    Publication date: April 14, 2011
    Inventors: Steven C. Christian, Paul T. Rothstein, Tom P. Daigle
  • Publication number: 20110071519
    Abstract: Method and apparatus for ablating target tissue adjacent pulmonary veins of a patient. A clamping ablation tool can include an upper arm having an upper neck, a link assembly, and an upper actuator. The link assembly can include a distal electrode and a proximal electrode. The clamping ablation tool can include a lower arm that mates with the upper arm. The lower arm can include a lower neck, a distal jaw, and a lower actuator. The distal jaw can include a jaw electrode, and the lower actuator can control movement of the distal jaw.
    Type: Application
    Filed: June 14, 2010
    Publication date: March 24, 2011
    Inventors: Paul T. Rothstein, David E. Francischelli, Terri Jean Cormack, Tom P. Daigle, Alison Lutterman, Roderick E. Briscoe, Steven C. Christian
  • Patent number: 7875028
    Abstract: System, device and method for ablating target tissue adjacent pulmonary veins of a patient through an incision. An ablation device can include a hinge including a cam assembly, a moving arm, a floating jaw, and a lower jaw. Fingers can engage the floating jaw to hold the floating jaw in a first position with respect to the moving arm. Some embodiments of the invention can provide an ablation device including a central support, an upper four-bar linkage coupled to the central support, an upper jaw coupled to the upper linkage, a lower four-bar linkage coupled to the central support, and a lower jaw coupled to the lower linkage. Some embodiments of the invention can provide an ablation device having an upper jaw including a first cannula connection and a lower jaw including a second cannula connection. The system can include a first catheter coupled to the first cannula connection and a second catheter coupled to the second cannula connection.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: January 25, 2011
    Assignee: Medtronic, Inc.
    Inventors: Steven C. Christian, Paul T. Rothstein, Tom P. Daigle
  • Publication number: 20100305398
    Abstract: Tissue stabilizers including a clamp assembly, a turret assembly, an articulating arm having a tension element extending therethrough, a collet assembly and a head-link assembly are disclosed. Methods of stabilizing tissue are also disclosed.
    Type: Application
    Filed: August 3, 2010
    Publication date: December 2, 2010
    Inventors: Andrew L. Olson, Michael J. Hobday, Steven C. Christian, Tom P. Daigle, Robert H. Reetz, Douglas H. Gubbin, Roderick E. Briscoe, William A. Steinberg, Adam A. Podbelski, Christopher J. Plott, Patrick J. Cloutier, Gerard C. Forest, Christopher P. Olig
  • Publication number: 20100298824
    Abstract: Structure and method for using a sub-xiphoid ablation clamp for ablating tissue of a patient. The clamp has an elongate shaft having a major axis, first and second opposing jaws configured to open and close along a first plane, a first and second ablation element positioned along the first and second jaws configured to ablate the tissue positioned therebetween, an actuable joint operatively coupled between the shaft and the opposing jaws and configured to move the opposing jaws to a selectable angle relative to the major axis of the elongate shaft along a second plane orthogonal to the first plane. The ablation clamp has a handle operatively coupled to the shaft having an actuator configured to actuate the actuable joint and a trigger mechanism to open and close the opposing jaws.
    Type: Application
    Filed: April 6, 2010
    Publication date: November 25, 2010
    Inventors: Paul T. Rothstein, Alison Lutterman, David Kim, Tom P. Daigle
  • Publication number: 20100292749
    Abstract: Device and method for sub-xiphoid ablation of patient tissue. A sub-xiphoid access clamp has a handle, an elongate neck coupled to the handle and first and second opposing jaws. The first and second opposing jaws have first and second opposing relief segments being generally co-planar and concave with respect to one another to form a void therebetween, and first and second opposing elongate ablation elements positioned along the first and second opposing jaws and distal of the first and second opposing relief segments relative to the handle. The first and second opposing jaws are articulate between a closed position and an open position to admit, at least in part, a second portion of tissue of the patient within the void created by the first and second opposing relief segments while the first portion of tissue is positioned between the first and second ablation elements in the closed position.
    Type: Application
    Filed: April 28, 2010
    Publication date: November 18, 2010
    Applicant: Medtronic, Inc.
    Inventors: Mark T. Stewart, Tom P. Daigle, David E. Francischelli, John R. Liddicoat, Paul T. Rothstein, Steven F. Bolling
  • Patent number: 7794387
    Abstract: Tissue stabilizers including a clamp assembly, a turret assembly, an articulating arm having a tension element extending therethrough, a collet assembly and a head-link assembly are disclosed. Methods of stabilizing tissue are also disclosed.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: September 14, 2010
    Assignee: Medtronic, Inc.
    Inventors: Andrew L. Olson, Michael J. Hobday, Steven C. Christian, Tom P. Daigle, Robert H. Reetz, Douglas H. Gubbin, Roderick E. Briscoe, William A. Steinberg, Adam A. Podbelski, Christopher J. Plott, Patrick J. Cloutier, Gerard C. Forest, Christopher P. Olig
  • Patent number: 7758576
    Abstract: Method and apparatus for ablating target tissue adjacent pulmonary veins of a patient. A clamping ablation tool can include an upper arm having an upper neck, a link assembly, and an upper actuator. The link assembly can include a distal electrode and a proximal electrode. The clamping ablation tool can include a lower arm that mates with the upper arm. The lower arm can include a lower neck, a distal jaw, and a lower actuator. The distal jaw can include a jaw electrode, and the lower actuator can control movement of the distal jaw.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: July 20, 2010
    Assignee: Medtronic, Inc.
    Inventors: Paul T. Rothstein, David E. Francischelli, Terri Jean Cormack, Tom P. Daigle, Alison Lutterman, Roderick E. Briscoe, Steven C. Christian
  • Publication number: 20100145361
    Abstract: A novel occluder application and clip device for treatment of embolic stroke caused by atrial fibrillation uses multiple sutures in a non directional handle to affix the occlusion device to the applicator and manipulate the occluder from an open and receiving position to a closed and occluding position. The occluder is retained in place by a clamping means related to locks retainers, resilient material or otherwise. An actuator mechanism is used to manipulate the occluder to a locked or occluding position. The applicator with the occluder attached has a low profile and remote manipulations to allow the occluder to be delivered to the clamping location within a patient through a small incision or delivery port such as a trocar cannula or the like.
    Type: Application
    Filed: October 2, 2009
    Publication date: June 10, 2010
    Inventors: David E. Francischelli, Roderick E. Briscoe, Leonard H. Leuer, Daniel C. Haeg, Tom P. Daigle, David Kim, Mark T. Stewart, Andrew L. Olson, Patrick J. Cloutier, Christopher W. Smith, Michael J. Hobday, Tessy Kanayinkal, Douglas H. Gubbin, Paul T. Rothstein, Joseph E. Cardinal, Jessica L. Foley, Christopher J. Plott
  • Patent number: 7678108
    Abstract: Embodiments of the invention provide an ablation apparatus for ablating target tissue adjacent pulmonary veins of a patient. The ablation apparatus can include a tube capable of being advanced around the pulmonary veins to form a loop. The tube can receive or include electrodes to ablate target tissue. Some embodiments provide a loop ablation device, which may include a cannula and two or more electrode rods carrying two or more bipolar electrodes. The electrode rods can be advanced through the distal ends toward the proximal ends of the loop and toward the target tissue. The bipolar electrodes can receive energy to ablate the target tissue. The bipolar electrodes may be surrounded by the liquid within the cannula while ablating the target tissue. The loop ablation device can further include a rotating grasping mechanism coupled to the electrode rods.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: March 16, 2010
    Assignee: Medtronic, Inc.
    Inventors: Steven C. Chrisitian, David E. Francischelli, Adam A. Podbeliski, Daniel Charles Haeg, Marie T. Steinbrink, Roderick E. Briscoe, Tom P. Daigle