Patents by Inventor Tom Schoffelen

Tom Schoffelen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10696826
    Abstract: The invention is directed to bimodal polyethylene having a flow ratio FRR ranging between ?30 and ?40, a density ranging between ?949.0 and ?952.0 kg/m3, an MFR190/5 ranging between ?0.1 and ?0.2 g/10 min and comprising from 50 to 54% by weight of an ethylene homopolymer A and from 46-50% by weight of an ethylene-butene copolymer B, where all percentages are based on the total weight of the composition and wherein ethylene homopolymer A has a viscosity number ?70 and ?100 cm3/g and a density between ?968 and ?972 kg/m3. The polyethylene is suitable to be applied in the production of pipes.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: June 30, 2020
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Priya Garg, Nicolaas Hendrika Friederichs, Tom Schoffelen
  • Patent number: 10435548
    Abstract: The invention is directed to a multimodal polyethylene having a flow ratio FRR ranging between ?25 and ?35, a density ranging between ?948.0 kg/m3 and ?953.0 kg/m3, an MFR190/5 ranging between ?0.1 and ?0.4 g/10 min and comprising from 50-54% by weight of an ethylene homopolymer A and from 46-50% by weight of an ethylene-hexene copolymer B, where ah percentages are based on the total weight of the composition and wherein ethylene homopolymer A has a viscosity number ?110 cm3/g and ?130 cm3/g and a density between ?960.0 kg/m3 and ?969.0 kg/m3. The polyethylene is suitable to be applied in the production of pipes.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: October 8, 2019
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Priya Garg, Nicolaas Hendrika Friederichs, Tom Schoffelen
  • Publication number: 20180208749
    Abstract: The invention is directed to bimodal polyethylene having a flow ratio FRR ranging between ?30 and ?40, a density ranging between ?949.0 and ?952.0 kg/m3, an MFR190/5 ranging between ?0.1 and ?0.2 g/10 min and comprising from 50 to 54% by weight of an ethylene homopolymer A and from 46-50% by weight of an ethylene-butene copolymer B, where all percentages are based on the total weight of the composition and wherein ethylene homopolymer A has a viscosity number ?70 and ?100 cm3/g and a density between ?968 and ?972 kg/m3. The polyethylene is suitable to be applied in the production of pipes.
    Type: Application
    Filed: June 30, 2016
    Publication date: July 26, 2018
    Inventors: Priya Garg, Nicolaas Hendrika Friederichs, Tom Schoffelen
  • Publication number: 20180179366
    Abstract: The invention is directed to a multimodal polyethylene having a flow ratio FRR ranging between ?25 and ?35, a density ranging between ?948.0 kg/m3 and ?953.0 kg/m3, an MFR190/5 ranging between ? 0.1 and ?0.4 g/10 min and comprising from 50-54% by weight of an ethylene homopolymer A and from 46-50% by weight of an ethylene-hexene copolymer B, where all percentages are based on the total weight of the composition and wherein ethylene homopolymer A has a viscosity number ?110 cm3/g and ?130 cm3/g and a density between ?960.0 kg/m3 and ?969.0 kg/m3. The polyethylene is suitable to be applied in the production of pipes.
    Type: Application
    Filed: April 29, 2016
    Publication date: June 28, 2018
    Inventors: Priya Garg, Nicolaas Hendrika Friederichs, Tom Schoffelen
  • Patent number: 9994654
    Abstract: The invention relates to a continuous process for the production of ultra-high molecular weight polyethylene with an Elongational Stress of at least 0.43 N/mm2. The polymerization of ethylene takes place in the presence of a catalyst and hydrogen. It is an advantage of the process according to the invention that the use of small amounts of hydrogen during the production of UHMWPE reduces reactor fouling. Furthermore, the process according to the invention results in longer run times in polymerization reactors, less cleaning cycles to remove reactor fouling and in less need for other anti-fouling agents or anti-static agents.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: June 12, 2018
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Nicolaas Hendrika Friederichs, Mark Vlaar, Tom Schoffelen, Matthijs Van Kessel
  • Publication number: 20170283528
    Abstract: The invention relates to a continuous process for the production of ultra-high molecular weight polyethylene with an Elongational Stress of at least 0.43 N/mm2. The polymerisation of ethylene takes place in the presence of a catalyst and hydrogen. It is an advantage of the process according to the invention that the use of small amounts of hydrogen during the production of UHM-WPE reduces reactor fouling. Furthermore, the process according to the invention results in longer run times in polymerization reactors, less cleaning cycles to remove reactor fouling and in less need for other anti-fouling agents or anti-static agents.
    Type: Application
    Filed: September 3, 2015
    Publication date: October 5, 2017
    Inventors: Nicolaas Hendrika Friederichs, Mark Vlaar, Tom Schoffelen, Matthijs Van Kessel
  • Patent number: 9587047
    Abstract: The invention relates to a process for the production of bimodal polyethylene in a two-step polymerization process in the presence of a catalyst system comprising: (I) the solid reaction product obtained by reacting of: a) a hydrocarbon solution containing 1) an organic oxygen containing magnesium compound or a halogen containing magnesium compound and 2) an organic oxygen containing titanium compound and b) an aluminum halogenide having the formula AIRnX3-n in which R is a hydrocarbon radical containing 1-10 carbon atoms, X is halogen and 0<n<3 (II) an aluminum compound having the formula AIR3 in which R is a hydrocarbon radical containing 1-10 carbon atom and (III) an electron donor selected from the group of 1,2-dialkoxyalkanes and 1,2-dialkoxyalkenes wherein in the first step a low molecular weight polyethylene is produced which has a MFI190/1,2 is between 1 and 200 dg/min, and in the second step a high molecular weight ethylene copolymer is produced in which the MFI190/5 of the total product is bet
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: March 7, 2017
    Assignee: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Aurora Alexandra Batinas-Geurts, Nicolaas Hendrika Friederichs, Tom Schoffelen, Erik Zuidema, Priya Garg
  • Patent number: 9518135
    Abstract: The invention relates to a catalyst system for the production of ultrahigh molecular weight polyethylene comprising I. a solid reaction product obtained by reaction of: (a) a hydrocarbon solution comprising (1) an organic oxygen containing magnesium compound or a halogen containing magnesium compound and (2) an organic oxygen containing titanium compound and (b) a mixture comprising a metal compound having the formula MeRnX3-n wherein X is a halogenide, Me is a metal of Group III of Mendeleev's Periodic System of Chemical Elements, R is a hydrocarbon radical containing 1-10 carbon atoms and 0?n?3 and a silicon compound of formula RmSiCl4.m wherein 0?m?2 and R is a hydrocarbon radical containing 1-10 carbon atoms wherein the molar ratio of metal from (b): titanium from (a) is lower than 1:1 II. an organo aluminium compound having the formula AIR3 in which R is a hydrocarbon radical containing 1-10 carbon atoms and III.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: December 13, 2016
    Assignee: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Aurora Alexandra Batinas-Geurts, Nicolaas Hendrika Friederichs, Tom Schoffelen, Erik Zuidema
  • Publication number: 20140350200
    Abstract: The invention relates to a process for the production of bimodal polyethylene in a two-step polymerisation process in the presence of a catalyst system comprising: (I) the solid reaction product obtained by reacting of: a) a hydrocarbon solution containing 1) an organic oxygen containing magnesium compound or a halogen containing magnesium compound and 2) an organic oxygen containing titanium compound and b) an aluminium halogenide having the formula AIRnX3-n in which R is a hydrocarbon radical containing 1-10 carbon atoms, X is halogen and 0<n<3 (II) an aluminium compound having the formula AIR3 in which R is a hydrocarbon radical containing 1-10 carbon atom and (III) an electron donor selected from the group of 1,2-dialkoxyalkanes and 1,2-dialkoxyalkenes wherein in the first step a low molecular weight polyethylene is produced which has a MFI190/1.
    Type: Application
    Filed: December 6, 2012
    Publication date: November 27, 2014
    Applicant: Saudi Basic Industries Corporation
    Inventors: Aurora Alexandra Batinas-Geurts, Nicolaas Hendrika Friederichs, Tom Schoffelen, Erik Zuidema, Priya Garg
  • Publication number: 20140296454
    Abstract: The invention relates to a catalyst system for the production of ultrahigh molecular weight polyethylene comprising I. a solid reaction product obtained by reaction of: (a) a hydrocarbon solution comprising (1) an organic oxygen containing magnesium compound or a halogen containing magnesium compound and (2) an organic oxygen containing titanium compound and (b) a mixture comprising a metal compound having the formula MeRnX3-n wherein X is a halogenide, Me is a metal of Group III of Mendeleev's Periodic System of Chemical Elements, R is a hydrocarbon radical containing 1-10 carbon atoms and 0?n?3 and a silicon compound of formula RmSiCl4.m wherein 0?m?2 and R is a hydrocarbon radical containing 1-10 carbon atoms wherein the molar ratio of metal from (b): titanium from (a) is lower than 1:1 II. an organo aluminium compound having the formula AIR3 in which R is a hydrocarbon radical containing 1-10 carbon atoms and III.
    Type: Application
    Filed: December 10, 2012
    Publication date: October 2, 2014
    Applicant: Saudi Basic Industries Corporation
    Inventors: Aurora Alexandra Batinas-Geurts, Nicolaas Hendrika Friederichs, Tom Schoffelen, Erik Zuidema