Patents by Inventor Tomas Hilding

Tomas Hilding has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6673430
    Abstract: The present invention describes a coated cutting tool for metal machining. The coating is formed by one or more layers of refractory compounds of which at least one layer of fine-grained, crystalline &ggr;-phase alumina, Al2O3, with a grainsize less than 0.1 &mgr;m. The Al2O3 layer is deposited with a bipolar pulsed DMS technique (Dual Magnetron Sputtering) at substrate temperatures in the range 450° C. to 700° C. preferably 550° C. to 650° C., depending on the particular material of the tool body to be coated. Identification of the &ggr;-phase alumina is made by X-ray diffraction. Reflexes from the (400) and (440) planes occurring at the 2&thgr;0- angles 45.8 and 66.8 degrees when using CuK&agr; radiation identify the &ggr;-phase Al2O3. The alumina layer is also very strongly textured in the [440]-direction. The Al2O3 layer is virtually free of cracks and halogen impurities. Furthermore, the Al2O3 layer gives the cutting edge of the tool an extremely smooth surface finish.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: January 6, 2004
    Assignees: Sandvik AB, Fraunhofer-Gesellschaft zur Forderung der angewandten Forschung e.V.
    Inventors: Siegfried Schiller, Klaus Goedicke, Fred Fietzke, Olaf Zywitzki, Mats Sjöstrand, Björn Ljungberg, Tomas Hilding, Viveka Alfredsson
  • Publication number: 20030027015
    Abstract: The present invention describes a coated cutting tool for metal maching. The coating is formed by one or more layers of refractory compounds of which at least one layer of fine-grained, crystalline &ggr;-phase alumina, Al2O3, with a grainsize less than 0.1 &mgr;m. The Al2O3 layer is deposited with a bipolar pulsed DMS technique (Dual Magnetron Sputtering) at substrate temperatures in the range 450° C. to 700 C.° preferably 550 C.° to 650 C.°, depending on the particular material of the tool body to be coated. Identification of the &ggr;-phase alumina is made by X-ray diffraction. Reflexes from the (400) and (440) planes occurring at the 2&thgr;-angles 45.8 and 66.8 degrees when using CuK&agr; radiation identify the &ggr;-phase Al2O3. The alumina layer is also very strongly textured in the [440]-direction. The Al2O3 layer is virtually free of cracks and halogen impurities. Furthermore, the Al2O3 layer gives the cutting edge of the tool an extremely smooth surface finish.
    Type: Application
    Filed: May 22, 2002
    Publication date: February 6, 2003
    Inventors: Siegfried Schiller, Klaus Goedicke, Fred Fietzke, Olaf Zywitzki, Mats Sjostrand, Bjorn Ljungberg, Tomas Hilding, Viveka Alfredsson
  • Patent number: 6423403
    Abstract: The present invention describes a coated substrate material. The coating is formed by one or more layers of refractory compounds of which at least one layer of fine-grained, crystalline &ggr;-phase alumina, Al2O3, with a grainsize less than 0.1 &mgr;m. The Al2O3layer is deposited with a bipolar pulsed DMS technique (Dual Magnetron Sputtering) at substrate temperatures in the range 450° C. to 700° C., preferably 550° C. to 650° C., depending on the particular substrate material. Identification of the &ggr;-phase alumina is made by X-ray diffraction. Reflexes from the (400) and (440) planes occurring at the 2&thgr;-angles 45.8 and 66.8 degrees when using CuK&agr; radiation identify the &ggr;-phase Al2O3. The alumina layer is also very strongly textured in the [440]-direction. The Al2O3 layer is virtually free of cracks and halogen impurities. Furthermore, the Al2O3 layer gives the cutting edge of the tool an extremely smooth surface finish.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: July 23, 2002
    Assignees: Sandvik AB, Fraunhofer Gesillschaft zur Forderung der Angewandten Forschung E.V.
    Inventors: Siegfried Schiller, Klaus Goedicke, Fred Fietzke, Olaf Zywitzki, Mats Sjöstrand, Björn Ljungberg, Tomas Hilding, Viveka Alfredsson
  • Publication number: 20010049011
    Abstract: The present invention describes a coated cutting tool for metal machining. The coating is composed of one or more layers of refractory compounds of which at least one layer consists of fine-grained, crystalline &ggr;-phase alumina, Al2O3, with a grainsize less than 0.1 &mgr;m. The Al2O3 layer is deposited with a bipolar pulsed DMS technique (Dual Magnetron Sputtering) at substrate temperatures in the range 450° C. to 700° C., preferably 550° C. to 650° C., depending on the particular material of the tool body to be coated. Identification of the &ggr;-phase alumina is made by X-ray diffraction. Reflexes from the (400) and (440) planes occurring at at the 2&thgr;-angles 45.8 and 66.8, degrees when using CuK&agr; radiation identify the &ggr;-phase Al2O3. The alumina layer is also very strongly textured in the [440]-direction.
    Type: Application
    Filed: February 14, 2001
    Publication date: December 6, 2001
    Inventors: Siegfried Schiller, Klaus Goedicke, Fred Fietzke, Olaf Zywitzki, Mats Sjostrand, Bjorn Ljungberg, Tomas Hilding, Viveka Alfredsson
  • Patent number: 6210726
    Abstract: The present invention describes a coated cutting tool for metal machining. The coating is formed by one or more layers of a refractory compound of which at least one layer of fine-grained, crystalline &ggr;-phase alumina, Al2O3, with a grain size of less than 0.1 &mgr;m. The Al2O3 layer is deposited with a bipolar pulsed DMS technique (Dual Magnetron Sputtering) at substrate temperatures in the range 450° C. to 700° C., preferably 550° C. to 650° C., depending on the particular material of the tool body to be coated. Identification of the &ggr;-phase alumina is made by X-ray diffraction. Reflexes from the (400) and (440) planes occurring at the 2&thgr;-angles 45.8 and 66.8 degrees when using Cu&kgr;&agr; radiation identify the &ggr;-phase Al2O3. The alumina layer is also very strongly textured in the [(440)]-direction. The Al2O3 layer is virtually free of cracks and halogen impurities. Furthermore, the Al2O3 layer gives the cutting edge of the tool an extremely smooth surface finish.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: April 3, 2001
    Assignee: Sandvik AB
    Inventors: Siegfried Schiller, Klaus Goedicke, Fred Fietzke, Olaf Zywitzki, Mats Sjöstrand, Björn Ljungberg, Tomas Hilding, Viveka Alfredsson
  • Patent number: D580351
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: November 11, 2008
    Assignee: Atlas Copco Tools AB
    Inventors: Karl Johan Lars Elsmark, Nils Tomas Hilding, Karl Nils Magnus Sjogren, Carl Gunnar Ostling