Patents by Inventor Tomas J. Boothby

Tomas J. Boothby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170300817
    Abstract: Generate an automorphism of the problem graph, determine an embedding of the automorphism to the hardware graph and modify the embedding of the problem graph into the hardware graph to correspond to the embedding of the automorphism to the hardware graph. Determine an upper-bound on the required chain strength. Calibrate and record properties of the component of a quantum processor with a digital processor, query the digital processor for a range of properties. Generate a bit mask and change the sign of the bias of individual qubits according to the bit mask before submitting a problem to a quantum processor, apply the same bit mask to the bit result. Generate a second set of parameters of a quantum processor from a first set of parameters via a genetic algorithm.
    Type: Application
    Filed: April 13, 2017
    Publication date: October 19, 2017
    Inventors: Andrew D. King, Robert B. Israel, Paul I. Bunyk, Tomas J. Boothby, Steven P. Reinhardt, Aidan P. Roy, James A. King, Trevor M. Lanting, Abraham J. Evert
  • Publication number: 20170255629
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Application
    Filed: March 2, 2017
    Publication date: September 7, 2017
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Tomas J. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
  • Publication number: 20170220510
    Abstract: Topologies for analog computing systems are provided. Qubits in the topology are grouped into cells, and cells are coupled to adjacent cells by inter-cell couplers. At least some cells are coupled to non-adjacent cells via long-range couplers. Long-range couplers may be arranged into coverings so that certain sets of qubits within a covering region may be coupled with a reduced number of couplers. Each cell within a covering region without a long-range coupler may be proximate to a cell with a long range coupler so that each cell within the covering region is no more than a certain coupling distance away from a long-range coupler. Long-range couplers may couple over a greater physical distance than inter-cell couplers. Long-range couplers may couple to qubits over a larger coupling region, and may extend across multiple crossing regions between qubits.
    Type: Application
    Filed: January 27, 2017
    Publication date: August 3, 2017
    Inventors: Jeremy P. Hilton, Aidan Patrick Roy, Paul I. Bunyk, Andrew Douglas King, Tomas J. Boothby, Richard G. Harris, Chunqing Deng