Patents by Inventor Tomas Manzaneque Garcia

Tomas Manzaneque Garcia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942920
    Abstract: A piezoelectric thin film (PTF) is located above a carrier substrate. The PTF may be X-cut LiNbO3 thin film adapted to propagate an acoustic wave in at least one of a first mode excited by an electric field oriented in a longitudinal direction along a length of the PTF or a second mode excited by the electric field oriented at least partially in a thickness direction of the PTF. A first interdigitated transducer (IDT) is disposed on a first end of the PTF. The first IDT is to convert a first electromagnetic signal, traveling in the longitudinal direction, into the acoustic wave. A second IDT is disposed on a second end of the PTF with a gap between the second IDT and the first IDT. The second IDT is to convert the acoustic wave into a second electromagnetic signal.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: March 26, 2024
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Ruochen Lu, Tomas Manzaneque Garcia, Yansong Yang, Songbin Gong
  • Patent number: 11695382
    Abstract: A method includes depositing a first metal layer on a semiconductor substrate; etching the first metal layer to form a first electrode having a first lead; depositing a piezoelectric layer on the semiconductor substrate and first electrode; etching the piezoelectric layer to a shape of the gyrator to be formed within the circulator; depositing a second metal layer on the piezoelectric layer; etching the second metal layer to form a second electrode having a second lead, the second electrode being positioned opposite the first electrode, wherein the first lead and the second lead form an electrical port; depositing a magnetostrictive layer on the second electrode; etching the magnetostrictive layer to approximately the shape of the piezoelectric layer; depositing a third metal layer on the magnetostrictive layer; and etching the third metal layer to form a metal coil that has a gap on one side to define a magnetic port.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: July 4, 2023
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Songbin Gong, Ruochen Lu, Tomas Manzaneque Garcia, Cheng Tu, Daniel Shoemaker, Chengxi Zhao
  • Patent number: 11621689
    Abstract: A piezoelectric thin film (PTF) is located above a carrier substrate. The PTF may be Z-cut LiNbO3 thin film adapted to propagate an acoustic wave in at least one of a first mode excited by an electric field oriented in a longitudinal direction along a length of the PTF or a second mode excited by the electric field oriented at least partially in a thickness direction of the PTF. A first interdigitated transducer (IDT) is disposed on a first end of the PTF. The first IDT is to convert a first electromagnetic signal, traveling in the longitudinal direction, into the acoustic wave. A second IDT is disposed on a second end of the PTF with a gap between the second IDT and the first IDT. The second IDT is to convert the acoustic wave into a second electromagnetic signal, and the gap determines a time delay of the acoustic wave.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: April 4, 2023
    Assignee: The Board of Trustees of the University of llllinois
    Inventors: Ruochen Lu, Tomas Manzaneque Garcia, Yansong Yang, Songbin Gong
  • Patent number: 11451209
    Abstract: A piezoelectric thin-film suspended above a carrier substrate. An input interdigital transducer (IDT) having first interdigitated electrodes is disposed at different locations along the horizontal axis and on the first side of the piezoelectric thin-film. Each opposing pair of the first interdigitated electrodes is to selectively transduce a particular frequency range of an input electrical signal that varies in frequency over time into an acoustic wave of a laterally vibrating mode based on a pitch between electrodes of the opposing pair. An output IDT that includes second interdigitated electrodes is disposed at different locations along the horizontal axis and on the second side of the piezoelectric thin-film. Each opposing pair of the second interdigitated electrodes is to convert the acoustic wave transduced by the respective opposing pair of the first interdigitated electrodes into a compressed pulse.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: September 20, 2022
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Songbin Gong, Ruochen Lu, Tomas Manzaneque Garcia
  • Publication number: 20210119602
    Abstract: A piezoelectric thin film (PTF) is located above a carrier substrate. The PTF can be an aluminum nitride thin film adapted to propagate an acoustic wave in at least one of a first mode excited by an electric field oriented at least partially in a longitudinal direction along a length of the PTF or a second mode excited by the electric field oriented in a thickness direction of the PTF. A first interdigitated transducer (IDT) is disposed on a first end of the PTF and converts a first electromagnetic signal, traveling in the longitudinal direction, into the acoustic wave. A second IDT is disposed on a second end of the PTF with a gap between the second IDT and the first IDT. The second IDT is to convert the acoustic wave into a second electromagnetic signal, and the gap determines a time delay of the acoustic wave.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 22, 2021
    Inventors: Ruochen Lu, Tomas Manzaneque Garcia, Yansong Yang, Songbin Gong
  • Publication number: 20210119606
    Abstract: A piezoelectric thin film (PTF) is located above a carrier substrate. The PTF may be X-cut LiNbO3 thin film adapted to propagate an acoustic wave in at least one of a first mode excited by an electric field oriented in a longitudinal direction along a length of the PTF or a second mode excited by the electric field oriented at least partially in a thickness direction of the PTF. A first interdigitated transducer (IDT) is disposed on a first end of the PTF. The first IDT is to convert a first electromagnetic signal, traveling in the longitudinal direction, into the acoustic wave. A second IDT is disposed on a second end of the PTF with a gap between the second IDT and the first IDT. The second IDT is to convert the acoustic wave into a second electromagnetic signal.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 22, 2021
    Inventors: Ruochen Lu, Tomas Manzaneque Garcia, Yansong Yang, Songbin Gong
  • Publication number: 20210119601
    Abstract: A piezoelectric thin film (PTF) is located above a carrier substrate. The PTF may be Z-cut LiNbO3 thin film adapted to propagate an acoustic wave in at least one of a first mode excited by an electric field oriented in a longitudinal direction along a length of the PTF or a second mode excited by the electric field oriented at least partially in a thickness direction of the PTF. A first interdigitated transducer (IDT) is disposed on a first end of the PTF. The first IDT is to convert a first electromagnetic signal, traveling in the longitudinal direction, into the acoustic wave. A second IDT is disposed on a second end of the PTF with a gap between the second IDT and the first IDT. The second IDT is to convert the acoustic wave into a second electromagnetic signal, and the gap determines a time delay of the acoustic wave.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 22, 2021
    Inventors: Ruochen Lu, Tomas Manzaneque Garcia, Yansong Yang, Songbin Gong
  • Publication number: 20200350884
    Abstract: A method includes depositing a first metal layer on a semiconductor substrate; etching the first metal layer to form a first electrode having a first lead; depositing a piezoelectric layer on the semiconductor substrate and first electrode; etching the piezoelectric layer to a shape of the gyrator to be formed within the circulator; depositing a second metal layer on the piezoelectric layer; etching the second metal layer to form a second electrode having a second lead, the second electrode being positioned opposite the first electrode, wherein the first lead and the second lead form an electrical port; depositing a magnetostrictive layer on the second electrode; etching the magnetostrictive layer to approximately the shape of the piezoelectric layer; depositing a third metal layer on the magnetostrictive layer; and etching the third metal layer to form a metal coil that has a gap on one side to define a magnetic port.
    Type: Application
    Filed: July 16, 2020
    Publication date: November 5, 2020
    Inventors: Songbin Gong, Ruochen Lu, Tomas Manzaneque Garcia, Cheng Tu, Daniel Shoemaker, Chengxi Zhao
  • Patent number: 10727804
    Abstract: An integrated circuit is a layered device, on a semiconductor substrate, which contains metal electrodes that sandwich a piezoelectric layer, followed by a magnetostrictive layer and a metal coil. The metal electrodes define an electrical port across which to receive an alternating current (AC) voltage, which is applied across the piezoelectric layer to cause a time-varying strain in the piezoelectric layer. The magnetostrictive layer is to translate the time-varying strain, received by way of a vibration mode from interaction with the piezoelectric layer, into a time-varying electromagnetic field. The metal coil, disposed on the magnetostrictive layer, includes a magnetic port at which to induce a current based on exposure to the time-varying electromagnetic field generated by the magnetostrictive layer.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: July 28, 2020
    Assignee: Board of Trustees of the University of Illinois
    Inventors: Songbin Gong, Ruochen Lu, Tomas Manzaneque Garcia, Cheng Tu, Daniel Shoemaker, Chengxi Zhao
  • Publication number: 20190131953
    Abstract: A piezoelectric thin-film suspended above a carrier substrate. An input interdigital transducer (IDT) having first interdigitated electrodes is disposed at different locations along the horizontal axis and on the first side of the piezoelectric thin-film. Each opposing pair of the first interdigitated electrodes is to selectively transduce a particular frequency range of an input electrical signal that varies in frequency over time into an acoustic wave of a laterally vibrating mode based on a pitch between electrodes of the opposing pair. An output IDT that includes second interdigitated electrodes is disposed at different locations along the horizontal axis and on the second side of the piezoelectric thin-film. Each opposing pair of the second interdigitated electrodes is to convert the acoustic wave transduced by the respective opposing pair of the first interdigitated electrodes into a compressed pulse.
    Type: Application
    Filed: October 30, 2018
    Publication date: May 2, 2019
    Inventors: Songbin Gong, Ruochen Lu, Tomas Manzaneque Garcia
  • Publication number: 20180115294
    Abstract: An integrated circuit is a layered device, on a semiconductor substrate, which contains metal electrodes that sandwich a piezoelectric layer, followed by a magnetostrictive layer and a metal coil. The metal electrodes define an electrical port across which to receive an alternating current (AC) voltage, which is applied across the piezoelectric layer to cause a time-varying strain in the piezoelectric layer. The magnetostrictive layer is to translate the time-varying strain, received by way of a vibration mode from interaction with the piezoelectric layer, into a time-varying electromagnetic field. The metal coil, disposed on the magnetostrictive layer, includes a magnetic port at which to induce a current based on exposure to the time-varying electromagnetic field generated by the magnetostrictive layer.
    Type: Application
    Filed: October 23, 2017
    Publication date: April 26, 2018
    Inventors: Songbin Gong, Rouchen Lu, Tomas Manzaneque Garcia, Cheng Tu, Daniel Shoemaker, Chengxi Zhao