Patents by Inventor Tommy Geisler
Tommy Geisler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12025828Abstract: A high backscattering optical fiber comprising a perturbed segment in which the perturbed segment reflects a relative power such that the optical fiber has an effective index of neff, a numerical aperture of NA, a scatter of Rp?r(fiber) that varies axially along the optical fiber, a total transmission loss of ?fiber, an in-band range greater than one nanometer (1 nm), and a figure of merit (FOM) in the in-band range. The FOM being defined as: F ? O ? M = R p ? "\[Rule]" r ( fiber ) ? fiber ( NA 2 ? n eff ) 2 .Type: GrantFiled: December 12, 2022Date of Patent: July 2, 2024Inventors: Tristan Kremp, Paul S. Westbrook, Tommy Geisler
-
Publication number: 20230111714Abstract: A high backscattering optical fiber comprising a perturbed segment in which the perturbed segment reflects a relative power such that the optical fiber has an effective index of neff, a numerical aperture of NA, a scatter of Rp?r(fiber) that varies axially along the optical fiber, a total transmission loss of ?fiber, an in-band range greater than one nanometer (1 nm), and a figure of merit (FOM) in the in-band range. The FOM being defined as: F ? O ? M = R p ? "\[Rule]" r ( fiber ) ? fiber ( NA 2 ? n eff ) 2 .Type: ApplicationFiled: December 12, 2022Publication date: April 13, 2023Applicant: OFS Fitel, LLCInventors: Tristan Kremp, Paul S. Westbrook, Tommy Geisler
-
Patent number: 11555955Abstract: A high backscattering optical fiber comprising a perturbed segment in which the perturbed segment reflects a relative power such that the optical fiber has an effective index of neff, a numerical aperture of NA, a scatter of Rp?r(fiber) that varies axially along the optical fiber, a total transmission loss of ?fiber, an in-band range greater than one nanometer (1 nm), and a figure of merit (FOM) in the in-band range. The FOM being defined as: FOM = R p ? r ( fiber ) ? fiber ? ( NA 2 ? n eff ) 2 .Type: GrantFiled: March 31, 2021Date of Patent: January 17, 2023Assignee: OFS FITEL, LLCInventors: Tristan Kremp, Paul S. Westbrook, Tommy Geisler
-
Publication number: 20210247563Abstract: A high backscattering optical fiber comprising a perturbed segment in which the perturbed segment reflects a relative power such that the optical fiber has an effective index of neff, a numerical aperture of NA, a scatter of Rp?r(fiber) that varies axially along the optical fiber, a total transmission loss of ?fiber, an in-band range greater than one nanometer (1 nm), and a figure of merit (FOM) in the in-band range. The FOM being defined as: FOM = R p ? r ( fiber ) ? fiber ? ( NA 2 ? n eff ) 2 .Type: ApplicationFiled: March 31, 2021Publication date: August 12, 2021Applicant: OFS Fitel, LLCInventors: Tristan Kremp, Paul S. Westbrook, Tommy Geisler
-
Patent number: 11061184Abstract: A high backscattering optical fiber comprising a perturbed segment in which the perturbed segment reflects a relative power such that the optical fiber has an effective index of neff, a numerical aperture of NA, a scatter of Rp?r(fiber), a total transmission loss of ?fiber, an in-band range greater than one nanometer (1 nm), a center wavelength (?0) of the in-band range (wherein 950 nm<?0<1700 nm), and a figure of merit (FOM) in the in-band range. The FOM>1, with the FOM being defined as: FOM = R p ? r ( fiber ) ? fiber ? ( NA 2 ? n eff ) 2 .Type: GrantFiled: August 18, 2020Date of Patent: July 13, 2021Assignee: OFS FITEL, LLCInventors: Tristan Kremp, Paul S. Westbrook, Tommy Geisler
-
Publication number: 20200379167Abstract: A high backscattering optical fiber comprising a perturbed segment in which the perturbed segment reflects a relative power such that the optical fiber has an effective index of neff, a numerical aperture of NA, a scatter of Rp?r(fiber), a total transmission loss of ?fiber, an in-band range greater than one nanometer (1 nm), a center wavelength (?0) of the in-band range (wherein 950 nm<?0<1700 nm), and a figure of merit (FOM) in the in-band range. The FOM>1, with the FOM being defined as: FOM = R p ? r ( fiber ) ? fiber ? ( NA 2 ? n eff ) 2 .Type: ApplicationFiled: August 18, 2020Publication date: December 3, 2020Applicant: OFS Fitel, LLCInventors: Tristan Kremp, Paul S. Westbrook, Tommy Geisler
-
Patent number: 10259742Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.Type: GrantFiled: February 2, 2018Date of Patent: April 16, 2019Assignee: OFS FITEL, LLCInventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V. S. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
-
Publication number: 20180251397Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.Type: ApplicationFiled: February 2, 2018Publication date: September 6, 2018Applicant: OFS Fitel, LLCInventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V.S Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
-
Patent number: 9964420Abstract: A distributed Brillouin sensor system comprising a pump laser, and a combined fiber assembly including at least a first optical fiber section and a second optical fiber section is described. The pump laser is arranged so as to send a pump signal into a first end of combined fiber assembly, and the detector system is arranged to detect Brillouin backscattering from the combined fiber assembly. The combined fiber assembly is characterized by the first section having a low Brillouin gain, and the second fiber section having a high Brillouin gain.Type: GrantFiled: October 30, 2015Date of Patent: May 8, 2018Assignee: OFS FITEL, LLCInventors: Lars Gruner-Nielsen, Poul Kristensen, Tommy Geisler
-
Patent number: 9919955Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.Type: GrantFiled: March 31, 2016Date of Patent: March 20, 2018Assignee: OFS FITEL, LLCInventors: Man F Yan, Peter I Borel, Tommy Geisler, Rasmus V Jensen, Ole A Levring, Jorgen Ostgaard Olsen, David W Peckham, Dennis J Trevor, Patrick W Wisk, Benyuan Zhu
-
Patent number: 9874519Abstract: A distributed Brillouin sensor system comprising a pump laser, a Brillouin sensor fiber, and a detector system is described. The pump laser is arranged so as to send a pump signal into a first end of the Brillouin sensor fiber, and the detector system is arranged to detect Brillouin backscattering from the Brillouin sensor fiber. The Brillouin sensor fiber is characterized by having a negative dispersion, and further by an effective area of the sensor fiber being less than or equal to 50 ?m2.Type: GrantFiled: October 30, 2015Date of Patent: January 23, 2018Assignee: OFS FITEL, LLCInventors: Lars Gruner-Nielsen, Poul Kristensen, Tommy Geisler
-
Publication number: 20170343728Abstract: A high backscattering fiber comprising a perturbed segment in which the perturbed segment reflects a relative power that is more than three (3) decibels (dB) above Rayleigh scattering. The high backscattering fiber also exhibits a coupling loss of less than 0.5 dB.Type: ApplicationFiled: August 16, 2017Publication date: November 30, 2017Applicant: OFS Fitel, LLCInventors: Tristan Kremp, Paul S Westbrook, Tommy Geisler
-
Patent number: 9766396Abstract: A high backscattering fiber comprising a perturbed segment in which the perturbed segment reflects a relative power that is more than three (3) decibels (dB) above Rayleigh scattering. The high backscattering fiber also exhibits a coupling loss of less than 0.5 dB.Type: GrantFiled: June 7, 2016Date of Patent: September 19, 2017Assignee: OFS FITEL, LLCInventors: Tristan Kremp, Paul S Westbrook, Tommy Geisler
-
Publication number: 20170192167Abstract: A high backscattering fiber comprising a perturbed segment in which the perturbed segment reflects a relative power that is more than three (3) decibels (dB) above Rayleigh scattering. The high backscattering fiber also exhibits a coupling loss of less than 0.5 dB.Type: ApplicationFiled: March 24, 2017Publication date: July 6, 2017Applicant: OFS Fitel, LLCInventors: Tristan Kremp, Paul S. Westbrook, Tommy Geisler
-
Publication number: 20170153178Abstract: A distributed Brillouin sensor system comprising a pump laser, a Brillouin sensor fiber, and a detector system is described. The pump laser is arranged so as to send a pump signal into a first end of the Brillouin sensor fiber, and the detector system is arranged to detect Brillouin backscattering from the Brillouin sensor fiber. The Brillouin sensor fiber is characterized by having a negative dispersion, and further by an effective area of the sensor fiber being less than or equal to 50 ?m2.Type: ApplicationFiled: October 30, 2015Publication date: June 1, 2017Inventors: Lars Gruner-Nielsen, Poul Kristensen, Tommy Geisler
-
Patent number: 9658402Abstract: A fiber is wound into first and second coils lying substantially in respective first and second planar directions having a substantially orthogonal relationship. The first and second coils are configured to result in respective first and second birefringences that are dominated by bend-induced birefringence. The first and second birefringences have respective axes that are rotated with respect to each other in real space by an angle that is substantially equal to 90 degrees. Light traveling through the fiber has a state of polarization that evolves in substantially opposite directions as it travels respectively through the first and second coils. The first and second coils are configured such that light traveling through the fiber acquires respective, substantially opposite first and second phase shifts. Light traveling through the fiber acquires respective first and second differential group delays that substantially compensate for each other.Type: GrantFiled: August 16, 2013Date of Patent: May 23, 2017Assignee: OFS FITEL, LLCInventor: Tommy Geisler
-
Publication number: 20170022094Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.Type: ApplicationFiled: March 31, 2016Publication date: January 26, 2017Applicant: OFS Fitel, LLCInventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
-
Publication number: 20160356709Abstract: A high backscattering fiber comprising a perturbed segment in which the perturbed segment reflects a relative power that is more than three (3) decibels (dB) above Rayleigh scattering. The high backscattering fiber also exhibits a coupling loss of less than 0.5 dB.Type: ApplicationFiled: June 7, 2016Publication date: December 8, 2016Applicant: OFS Fitel, LLCInventors: Tristan Kremp, Paul S. Westbrook, Tommy Geisler
-
Publication number: 20160258788Abstract: A distributed Brillouin sensor system comprising a pump laser, and a combined fiber assembly including at least a first optical fiber section and a second optical fiber section is described. The pump laser is arranged so as to send a pump signal into a first end of combined fiber assembly, and the detector system is arranged to detect Brillouin backscattering from the combined fiber assembly. The combined fiber assembly is characterized by the first section having a low Brillouin gain, and the second fiber section having a high Brillouin gain.Type: ApplicationFiled: October 30, 2015Publication date: September 8, 2016Inventors: Lars Gruner-Nielsen, Poul Kristensen, Tommy Geisler
-
Patent number: 9304058Abstract: Techniques for analyzing output modal content of optical fibers that support more than one spatial mode are disclosed. These techniques are based on spatially resolving interference between co-propagating modes and constructing a spatial beat pattern between the co-propagating modes. By doing so, these techniques provide information about the modes that propagate along the optical fiber.Type: GrantFiled: October 8, 2013Date of Patent: April 5, 2016Assignee: OFS FITEL, LLCInventors: John M Fini, Tommy Geisler, Poul Kristensen, Jeffrey W Nicholson