Patents by Inventor Tommy Huang

Tommy Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240096539
    Abstract: A header component for mounting an inductive component on a substrate comprises a housing for housing the inductive component inside a cavity, wherein the housing confines the cavity to a bottom side and to at least three lateral sides, and wherein the housing comprises a top opening to the cavity at a top side opposite to the bottom side, wherein the top opening is configured for inserting the inductive component into the cavity via the top opening. The header component further comprises a plurality of terminals for electrically connecting the inductive component to the substrate, wherein the terminals outwardly protrude from the housing at the bottom side. Further disclosed are an inductive device and a method for assembling an inductive device.
    Type: Application
    Filed: September 5, 2023
    Publication date: March 21, 2024
    Inventors: Martin ROMERO, Tommy HUANG, Cem SOM
  • Patent number: 11925736
    Abstract: Dialyzer systems can consolidate multiple technologies and functionalities of blood treatment systems in a significantly integrated fashion. For example, this disclosure describes dialyzer systems that include a magnetically driven and magnetically levitating pump rotor integrated into the dialyzer. Such a dialyzer can be used with treatment modules that include a magnetic field-generating pump drive unit. In some embodiments, the dialyzers include pressure sensor chambers with flexible membranes with which corresponding pressure transducers of the treatment modules can interface to detect arterial and/or venous pressures.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: March 12, 2024
    Assignees: Fresenius Medical Care Deutschland GmbH, Fresenius Medical Care Holdings, Inc.
    Inventors: Massimo Earl Fini, Lynn E. Jensen, Alexander Heide, Dejan Nikolic, Arne Peters, Christoph Wiktor, Marina Wenke, Tommy Huang, Dacey John Ryan, Stefan Kreber, Lothar Leick, Dzhuney Terzi, Hendrik Therre, Manfred Weis, Alain Veneroni, Reinhold Reiter, Michele Marini, Davide Maria Benelli, Brad Yang, Jiunn Teo
  • Patent number: 11916200
    Abstract: The disclosure herein relates to rechargeable batteries and solid electrolytes therefore which include lithium-stuffed garnet oxides, for example, in a thin film, pellet, or monolith format wherein the density of defects at a surface or surfaces of the solid electrolyte is less than the density of defects in the bulk. In certain disclosed embodiments, the solid-state anolyte, electrolyte, and catholyte thin films, separators, and monoliths consist essentially of an oxide that conducts Li+ ions. In some examples, the disclosure herein presents new and useful solid electrolytes for solid-state or partially solid-state batteries. In some examples, the disclosure presents new lithium-stuffed garnet solid electrolytes and rechargeable batteries which include these electrolytes as separators between a cathode and a lithium metal anode.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: February 27, 2024
    Inventors: David Cao, Cheng-Chieh Chao, Zhebo Chen, Lei Cheng, Niall Donnelly, Wes Hermann, Tim Holme, Tommy Huang, Kian Kerman, Yang Li, Harsh Maheshwari
  • Patent number: 11911717
    Abstract: Certain aspects of the present disclosure relate to methods and apparatus for microbial sampling of foods. For example, a method may include providing at least one aggregating sampler at one or more sampling locations, and sampling a production lot of produce or other food items such as meat using the at least one aggregating sampler to create one or more samples that makes up a microbial sampling. Certain aspects of the present disclosure relate to methods and apparatus for microbial sampling of foods. For example, an apparatus, such as a microbial aggregating sampler, may include a covering having a microbial sampling material with a pocket formed in the covering to receive an appendage or a tool for handling of the covering.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: February 27, 2024
    Assignee: Fremonta Corporation
    Inventors: Terrance Arthur, Tommy Wheeler, Eric Child Wilhelmsen, Florence Q. Wu, Yongqing Huang, Wei Wu
  • Publication number: 20240006667
    Abstract: The disclosure herein relates to rechargeable batteries and solid electrolytes therefore which include lithium-stuffed garnet oxides, for example, in a thin film, pellet, or monolith format wherein the density of defects at a surface or surfaces of the solid electrolyte is less than the density of defects in the bulk. In certain disclosed embodiments, the solid-state anolyte, electrolyte, and catholyte thin films, separators, and monoliths consist essentially of an oxide that conducts Li+ ions. In some examples, the disclosure herein presents new and useful solid electrolytes for solid-state or partially solid-state batteries. In some examples, the disclosure presents new lithium-stuffed garnet solid electrolytes and rechargeable batteries which include these electrolytes as separators between a cathode and a lithium metal anode.
    Type: Application
    Filed: July 7, 2023
    Publication date: January 4, 2024
    Inventors: David CAO, Cheng-Chieh CHAO, Zhebo CHEN, Lei CHENG, Niall DONNELLY, Wes Hermann, Timothy HOLME, Tommy HUANG, Kian KERMAN, Yang LI, Harsh MAHESHWARI
  • Patent number: 11817551
    Abstract: Set forth herein are processes for making lithium-stuffed garnet oxides (e.g., Li7La3Zr2O12, also known as LLZO) that have passivated surfaces comprising a fluorinate and/or an oxyfluorinate species. These surfaces resist the formation of oxides, carbonates, hydroxides, peroxides, and organics that spontaneously form on LLZO surfaces under ambient conditions. Also set forth herein are new materials made by these processes.
    Type: Grant
    Filed: November 2, 2022
    Date of Patent: November 14, 2023
    Assignee: QuantumScape Battery, Inc.
    Inventors: Cheng-Chieh Chao, Lei Cheng, Christopher Dekmezian, Tiffany Ho, Timothy Holme, Tommy Huang, Amal Mehrotra, Aram Yang
  • Patent number: 11752247
    Abstract: Dialyzer systems can consolidate multiple technologies and functionalities of blood treatment systems in a significantly integrated fashion. For example, this disclosure describes dialyzer systems that include a magnetically driven and magnetically levitating pump rotor integrated into the dialyzer. Such a dialyzer can be used with treatment modules that include a magnetic field-generating pump drive unit. In some embodiments, the dialyzers include pressure sensor chambers with flexible membranes with which corresponding pressure transducers of the treatment modules can interface to detect arterial and/or venous pressures.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: September 12, 2023
    Assignee: Fresenius Medical Care Deutschland GmbH
    Inventors: Massimo Earl Fini, Tommy Huang, Dacey John Ryan, Alexander Heide, Dejan Nikolic, Arne Peters
  • Patent number: 11712501
    Abstract: Dialyzer systems can consolidate multiple technologies and functionalities of blood treatment systems in a significantly integrated fashion. For example, this disclosure describes dialyzer systems that include a magnetically driven and magnetically levitating pump rotor integrated into the dialyzer. Such a dialyzer can be used with treatment modules that include a magnetic field-generating pump drive unit. In some embodiments, the dialyzers include pressure sensor chambers with flexible membranes with which corresponding pressure transducers of the treatment modules can interface to detect arterial and/or venous pressures.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: August 1, 2023
    Assignee: Fresenius Medical Care Deutschland GmbH
    Inventors: Tommy Huang, Dacey John Ryan, Alexander Heide, Dejan Nikolic, Arne Peters
  • Publication number: 20230207868
    Abstract: Set forth herein are processes for making lithium-stuffed garnet oxides (e.g., Li7La3Zr2O12, also known as LLZO) that have passivated surfaces comprising a fluorinate and/or an oxyfluorinate species. These surfaces resist the formation of oxides, carbonates, hydroxides, peroxides, and organics that spontaneously form on LLZO surfaces under ambient conditions. Also set forth herein are new materials made by these processes.
    Type: Application
    Filed: November 2, 2022
    Publication date: June 29, 2023
    Inventors: Cheng-Chieh CHAO, Lei CHENG, Christopher DEKMEZIAN, Tiffany HO, Timothy HOLME, Tommy HUANG, Amal MEHROTRA, Aram YANG
  • Patent number: 11600850
    Abstract: Set forth herein are processes for making lithium-stuffed garnet oxides (e.g., Li7La3Zr2O12, also known as LLZO) that have passivated surfaces comprising a fluorinate and/or an oxyfluorinate species. These surfaces resist the formation of oxides, carbonates, hydroxides, peroxides, and organics that spontaneously form on LLZO surfaces under ambient conditions. Also set forth herein are new materials made by these processes.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: March 7, 2023
    Assignee: QuantumScape Battery, Inc.
    Inventors: Cheng-Chieh Chao, Lei Cheng, Christopher Dekmezian, Tiffany Ho, Tim Holme, Tommy Huang, Amal Mehrotra, Aram Yang
  • Publication number: 20220072209
    Abstract: Dialyzer systems can consolidate multiple technologies and functionalities of blood treatment systems in a significantly integrated fashion. For example, this disclosure describes dialyzer systems that include a magnetically driven and magnetically levitating pump rotor integrated into the dialyzer. Such a dialyzer can be used with treatment modules that include a magnetic field-generating pump drive unit. In some embodiments, the dialyzers include pressure sensor chambers with flexible membranes with which corresponding pressure transducers of the treatment modules can interface to detect arterial and/or venous pressures.
    Type: Application
    Filed: November 16, 2021
    Publication date: March 10, 2022
    Inventors: Massimo Earl Fini, Tommy Huang, Dacey John Ryan, Alexander Heide, Dejan Nikolic, Arne Peters
  • Publication number: 20220021025
    Abstract: Provided herein are detect-free solid-state separators which are useful as Li| ion-conducting electrolytes in electro-chemical cells and devices, such as, but not limited to, rechargeable batteries. In some examples, the separators have a Li+ ion-conductivity greater than 1*10?3 S/cm at room temperature.
    Type: Application
    Filed: September 16, 2021
    Publication date: January 20, 2022
    Inventors: Cheng-Chieh CHAO, Zhebo CHEN, Lei CHENG, Niall DONNELLY, Tim HOLME, Tommy HUANG, Sriram IYER, Kian KERMAN, Harsh MAHESHWARI, Jagdeep SINGH, Gengfu XU
  • Patent number: 11158880
    Abstract: Provided herein are defect-free solid-state separators which are useful as Li+ ion-conducting electrolytes in electrochemical cells and devices, such as, but not limited to, rechargeable batteries. In some examples, the separators have a Li+ ion-conductivity greater than 1*10?3 S/cm at room temperature.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: October 26, 2021
    Assignee: QuantumScape Battery, Inc.
    Inventors: Cheng-Chieh Chao, Zhebo Chen, Lei Cheng, Niall Donnelly, Tim Holme, Tommy Huang, Sriram Iyer, Kian Kerman, Harsh Maheshwari, Jagdeep Singh, Gengfu Xu
  • Publication number: 20210202983
    Abstract: Set forth herein are processes for making lithium-stuffed garnet oxides (e.g., Li7La3Zr2O12, also known as LLZO) that have passivated surfaces comprising a fluorinate and/or an oxyfluorinate species. These surfaces resist the formation of oxides, carbonates, hydroxides, peroxides, and organics that spontaneously form on LLZO surfaces under ambient conditions. Also set forth herein are new materials made by these processes.
    Type: Application
    Filed: November 6, 2018
    Publication date: July 1, 2021
    Inventors: Cheng-Chieh CHAO, Lei CHENG, Christopher DEKMEZIAN, Tiffany HO, Tim HOLME, Tommy HUANG, Amal MEHROTRA, Aram YANG
  • Publication number: 20210138136
    Abstract: Dialyzer systems can consolidate multiple technologies and functionalities of blood treatment systems in a significantly integrated fashion. For example, this disclosure describes dialyzer systems that include a magnetically driven and magnetically levitating pump rotor integrated into the dialyzer. Such a dialyzer can be used with treatment modules that include a magnetic field-generating pump drive unit. In some embodiments, the dialyzers include pressure sensor chambers with flexible membranes with which corresponding pressure transducers of the treatment modules can interface to detect arterial and/or venous pressures.
    Type: Application
    Filed: November 9, 2020
    Publication date: May 13, 2021
    Inventors: Massimo Earl Fini, Alain Veneroni, Reinhold Reiter, Michele Marini, Davide Benelli, Tommy Huang
  • Publication number: 20210138137
    Abstract: Dialyzer systems can consolidate multiple technologies and functionalities of blood treatment systems in a significantly integrated fashion. For example, this disclosure describes dialyzer systems that include a magnetically driven and magnetically levitating pump rotor integrated into the dialyzer. Such a dialyzer can be used with treatment modules that include a magnetic field-generating pump drive unit. In some embodiments, the dialyzers include pressure sensor chambers with flexible membranes with which corresponding pressure transducers of the treatment modules can interface to detect arterial and/or venous pressures.
    Type: Application
    Filed: November 9, 2020
    Publication date: May 13, 2021
    Inventors: Tommy Huang, Dacey John Ryan, Brad Yang, Alain Veneroni
  • Publication number: 20210138131
    Abstract: Dialyzer systems can consolidate multiple technologies and functionalities of blood treatment systems in a significantly integrated fashion. For example, this disclosure describes dialyzer systems that include a magnetically driven and magnetically levitating pump rotor integrated into the dialyzer. Such a dialyzer can be used with treatment modules that include a magnetic field-generating pump drive unit. In some embodiments, the dialyzers include pressure sensor chambers with flexible membranes with which corresponding pressure transducers of the treatment modules can interface to detect arterial and/or venous pressures.
    Type: Application
    Filed: November 12, 2020
    Publication date: May 13, 2021
    Inventors: Massimo Earl Fini, Lynn E. Jensen, Alexander Heide, Dejan Nikolic, Arne Peters, Christoph Wiktor, Marina Wenke, Tommy Huang, Dacey John Ryan, Stefan Kreber, Lothar Leick, Dzhuney Terzi, Hendrik Therre, Manfred Weis, Alain Veneroni, Reinhold Reiter, Michele Marini, Davide Benelli, Brad Yang, Jiunn Teo
  • Publication number: 20210138133
    Abstract: Dialyzer systems can consolidate multiple technologies and functionalities of blood treatment systems in a significantly integrated fashion. For example, this disclosure describes dialyzer systems that include a magnetically driven and magnetically levitating pump rotor integrated into the dialyzer. Such a dialyzer can be used with treatment modules that include a magnetic field-generating pump drive unit. In some embodiments, the dialyzers include pressure sensor chambers with flexible membranes with which corresponding pressure transducers of the treatment modules can interface to detect arterial and/or venous pressures.
    Type: Application
    Filed: November 9, 2020
    Publication date: May 13, 2021
    Inventors: Tommy Huang, Dacey John Ryan, Alexander Heide, Dejan Nikolic, Arne Peters
  • Publication number: 20190260073
    Abstract: Provided herein are defect-free solid-state separators which are useful as Li+ ion-conducting electrolytes in electrochemical cells and devices, such as, but not limited to, rechargeable batteries. In some examples, the separators have a Li+ ion-conductivity greater than 1*10?3 S/cm at room temperature.
    Type: Application
    Filed: August 4, 2017
    Publication date: August 22, 2019
    Inventors: Cheng-Chieh CHAO, Zhebo CHEN, Lei CHENG, Niall DONNELLY, Tim HOLME, Tommy HUANG, Sriram IYER, Kian KERMAN, Harsh MAHESHWARI, Jagdeep SINGH, Gengfu XU
  • Publication number: 20190245178
    Abstract: The disclosure herein relates to rechargeable batteries and solid electrolytes therefore which include lithium-stuffed garnet oxides, for example, in a thin film, pellet, or monolith format wherein the density of defects at a surface or surfaces of the solid electrolyte is less than the density of defects in the bulk. In certain disclosed embodiments, the solid-state anolyte, electrolyte, and catholyte thin films, separators, and monoliths consist essentially of an oxide that conducts Li+ ions. In some examples, the disclosure herein presents new and useful solid electrolytes for solid-state or partially solid-state batteries. In some examples, the disclosure presents new lithium-stuffed garnet solid electrolytes and rechargeable batteries which include these electrolytes as separators between a cathode and a lithium metal anode.
    Type: Application
    Filed: October 19, 2017
    Publication date: August 8, 2019
    Inventors: David CAO, Cheng-Chieh CHAO, Zhebo CHEN, Lei CHENG, Niall DONNELLY, Wes Hermann, Tim HOLME, Tommy HUANG, Kian KERMAN, Yang LI, Harsh MAHESHWARI