Patents by Inventor Tomoaki Hatayama

Tomoaki Hatayama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220376065
    Abstract: A silicon carbide semiconductor device includes a silicon carbide substrate, a first electrode, and a second electrode. The silicon carbide substrate has a first main surface, a second main surface, a first impurity region, a second impurity region, and a third impurity region. The first electrode is in contact with each of the second impurity region and the third impurity region on the first main surface. The second electrode is in contact with the first impurity region on the second main surface. The second impurity region includes a first region and a second region disposed between the first region and the second main surface and in contact with the first region. An impurity concentration of the first region is more than or equal to 6×1016 cm?3.
    Type: Application
    Filed: October 9, 2020
    Publication date: November 24, 2022
    Inventors: Tomoaki HATAYAMA, Takeyoshi MASUDA, Shinsuke HARADA
  • Patent number: 10612160
    Abstract: An epitaxial wafer includes a silicon carbide film having a first main surface. A groove portion is formed in the first main surface. The groove portion extends in one direction along the first main surface. Moreover, a width of the groove portion in the one direction is twice or more as large as a width of the groove portion in a direction perpendicular to the one direction. Moreover, a maximum depth of the groove portion from the first main surface is not more than 10 nm.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: April 7, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Taro Nishiguchi, Jun Genba, Hironori Itoh, Tomoaki Hatayama, Hideyuki Doi
  • Patent number: 10472736
    Abstract: An epitaxial wafer includes a silicon carbide film having a first main surface. A groove portion is formed in the first main surface. The groove portion extends in one direction along the first main surface. Moreover, a width of the groove portion in the one direction is twice or more as large as a width of the groove portion in a direction perpendicular to the one direction. Moreover, a maximum depth of the groove portion from the first main surface is not more than 10 nm.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: November 12, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Taro Nishiguchi, Jun Genba, Hironori Itoh, Tomoaki Hatayama, Hideyuki Doi
  • Patent number: 10192967
    Abstract: A silicon carbide semiconductor device includes a silicon carbide substrate, a gate oxide film, and a gate electrode. A trench is provided in the main surface to have a side surface and a bottom portion. A contact point between a first side surface portion and a second side surface portion is located in a third impurity region. An angle formed by the first side surface portion and a straight line extending through the contact point and parallel to the main surface is smaller than an angle formed by the second side surface portion and a boundary surface between a first impurity region and a second impurity region. A thickness of a portion of the gate oxide film on the contact point between the main surface and the first side surface portion is larger than a thickness of a portion of the gate oxide film on the second impurity region.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: January 29, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yu Saitoh, Tomoaki Hatayama, Takeyoshi Masuda
  • Publication number: 20180209064
    Abstract: An epitaxial wafer includes a silicon carbide film having a first main surface. A groove portion is formed in the first main surface. The groove portion extends in one direction along the first main surface. Moreover, a width of the groove portion in the one direction is twice or more as large as a width of the groove portion in a direction perpendicular to the one direction. Moreover, a maximum depth of the groove portion from the first main surface is not more than 10 nm.
    Type: Application
    Filed: March 23, 2018
    Publication date: July 26, 2018
    Inventors: Taro Nishiguchi, Jun Genba, Hironori Itoh, Tomoaki Hatayama, Hideyuki Doi
  • Patent number: 9957641
    Abstract: An epitaxial wafer includes a silicon carbide film having a first main surface. A groove portion is formed in the first main surface. The groove portion extends in one direction along the first main surface. Moreover, a width of the groove portion in the one direction is twice or more as large as a width of the groove portion in a direction perpendicular to the one direction. Moreover, a maximum depth of the groove portion from the first main surface is not more than 10 nm.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: May 1, 2018
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Taro Nishiguchi, Jun Genba, Hironori Itoh, Tomoaki Hatayama, Hideyuki Doi
  • Publication number: 20170047415
    Abstract: A silicon carbide semiconductor device includes a silicon carbide substrate, a gate oxide film, and a gate electrode. A trench is provided in the main surface to have a side surface and a bottom portion. A contact point between a first side surface portion and a second side surface portion is located in a third impurity region. An angle formed by the first side surface portion and a straight line extending through the contact point and parallel to the main surface is smaller than an angle formed by the second side surface portion and a boundary surface between a first impurity region and a second impurity region. A thickness of a portion of the gate oxide film on the contact point between the main surface and the first side surface portion is larger than a thickness of a portion of the gate oxide film on the second impurity region.
    Type: Application
    Filed: April 9, 2015
    Publication date: February 16, 2017
    Inventors: Yu Saitoh, Tomoaki Hatayama, Takeyoshi Masuda
  • Publication number: 20160326668
    Abstract: An epitaxial wafer includes a silicon carbide film having a first main surface. A groove portion is formed in the first main surface. The groove portion extends in one direction along the first main surface. Moreover, a width of the groove portion in the one direction is twice or more as large as a width of the groove portion in a direction perpendicular to the one direction. Moreover, a maximum depth of the groove portion from the first main surface is not more than 10 nm.
    Type: Application
    Filed: July 22, 2015
    Publication date: November 10, 2016
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Taro Nishiguchi, Jun Genba, Hironori Itoh, Tomoaki Hatayama, Hideyuki Doi
  • Patent number: 9293549
    Abstract: A silicon carbide layer includes a first region having a first conductivity type, a second region provided on the first region and having a second conductivity type, and a third region provided on the second region and having the first conductivity type. A trench having an inner surface is formed in the silicon carbide layer. The trench penetrates the second and third regions. The inner surface of the trench has a first side wall and a second side wall located deeper than the first side wall and having a portion made of the second region. Inclination of the first side wall is smaller than inclination of the second side wall.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: March 22, 2016
    Assignees: Sumitomo Electric Industries, Ltd., National University Corporation Nara Institute of Science and Technology
    Inventors: Takeyoshi Masuda, Tomoaki Hatayama
  • Patent number: 9006747
    Abstract: Provided are a technology that simply forms a particular crystal surface such as a {03-38} surface having high carrier mobility in trench sidewalls and a SiC semiconductor element where most of the trench sidewalls appropriate for a channel member are formed from {03-38} surfaces. A trench structure formed in a (0001) surface or an off-oriented surface of a (0001) surface with an offset angle 8° or lower of SiC is provided. The channel member is in the trench structure. At least 90% of the area of the channel member is a {03-38} surface or a surface that a {03-38} surface offset by an angle from ?8° to 8° in the <1-100> direction. Specifically, the trench sidewalls are finished to {03-38} surfaces by applying a thermal etching to a trench with (0001) surfaces of SiC. Thermal etching is conducted in a chlorine atmosphere above 800° C. with nitrogen gas as the carrier.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: April 14, 2015
    Assignee: National University Corporation Nara Institute of Science and Technology
    Inventors: Tomoaki Hatayama, Hidenori Koketsu, Yoshihiro Todokoro
  • Patent number: 8999854
    Abstract: On a substrate, a silicon carbide layer provided with a main surface is formed. A mask is formed to cover a portion of the main surface of the silicon carbide layer. The main surface of the silicon carbide layer on which the mask is formed is thermally etched using chlorine-based gas so as to provide the silicon carbide layer with a side surface inclined relative to the main surface. The step of thermally etching is performed in an atmosphere in which the chlorine-based gas has a partial pressure of 50% or smaller.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: April 7, 2015
    Assignees: Sumitomo Electric Industries, Ltd., National University Corporation Nara Institute of Science and Technology
    Inventors: Takeyoshi Masuda, Tomoaki Hatayama
  • Publication number: 20140203300
    Abstract: Provided are a technology that simply forms a particular crystal surface such as a {03-38} surface having high carrier mobility in trench sidewalls and a SiC semiconductor element where most of the trench sidewalls appropriate for a channel member are formed from {03-38} surfaces. A trench structure formed in a (0001) surface or an off-oriented surface of a (0001) surface with an offset angle 8° or lower of SiC is provided. The channel member is in the trench structure. At least 90% of the area of the channel member is a {03-38} surface or a surface that a {03-38} surface offset by an angle from ?8° to 8° in the <1-100> direction. Specifically, the trench sidewalls are finished to {03-38} surfaces by applying a thermal etching to a trench with (0001) surfaces of SiC. Thermal etching is conducted in a chlorine atmosphere above 800° C. with nitrogen gas as the carrier.
    Type: Application
    Filed: August 27, 2012
    Publication date: July 24, 2014
    Applicant: NATIONAL UNIVERSITY CORP NARA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Tomoaki Hatayama, Hidenori Koketsu, Yoshihiro Todokoro
  • Publication number: 20130023113
    Abstract: A method for manufacturing a MOSFET includes the steps of: introducing an impurity into a silicon carbide layer; forming a carbon layer in a surface layer portion of the silicon carbide layer having the impurity introduced therein, by selectively removing silicon from the surface layer portion; and activating the impurity by heating the silicon carbide layer having the carbon layer formed therein.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 24, 2013
    Applicants: NATIONAL UNIVERSITY CORPORATION NARA INSTITUTE OF SCIENCE AND TECHNOLOGY, Sumitomo Electric Industries, Ltd.
    Inventors: Takeyoshi Masuda, Tomoaki Hatayama
  • Publication number: 20110175111
    Abstract: Provided is a silicon carbide semiconductor device capable of lowering the contact resistance of an ohmic electrode and achieving high reverse breakdown voltage characteristics. A semiconductor device includes a substrate and a p+ region as an impurity layer. The substrate of the first conductive type (n type) is made of silicon carbide and has a dislocation density of 5×103 cm?2 or less. The p+ region is formed on the substrate, in which the concentration of the conductive impurities having the second conductive type different from the first conductive type is 1×1020 cm3 or more and 5×1021 cm3 or less.
    Type: Application
    Filed: August 7, 2009
    Publication date: July 21, 2011
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., NATIONAL UNIVERSITY CORPORATION NARA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Shin Harada, Hideto Tamaso, Tomoaki Hatayama