Patents by Inventor Tomoaki Yamabayashi

Tomoaki Yamabayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8716762
    Abstract: Disclosed are: a biosensor kit in which a bionsensor utilizing a field effect transistor is not deteriorated during storage or transport; and a system for detecting a substance of interest, which is equipped with the biosensor chip. The biosensor kit comprises a biosensor chip which can measure a substance of interest quantitatively and a package which can hermetically seal the biosensor chip and is composed of a packaging material comprising a metal film. The biosensor chip can measure the substance quantitatively based on the value of a current generated in a field effect transistor when the substance is reacted with a molecule that can recognize the substance and is immobilized on a reaction field connected to the field effect transistor. The biosensor chip comprises the field effect transistor and a mounting substrate on which the field effect transistor is mounted.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: May 6, 2014
    Assignee: Mitsumi Electric Co., Ltd.
    Inventors: Mitsuru Sakamoto, Hirohiko Urushiyama, Hiroaki Kikuchi, Tomoaki Yamabayashi
  • Patent number: 8710554
    Abstract: Disclosed are: a biosensor kit in which a biosensor utilizing a field effect transistor is not deteriorated during storage or transport; and a system for detecting a substance of interest, which is equipped with the biosensor chip. The biosensor kit comprises a biosensor chip which can measure a substance of interest quantitatively and a package which can hermetically seal the biosensor chip and is composed of a packaging material comprising a metal film. The biosensor chip can measure the substance quantitatively based on the value of a current generated in a field effect transistor when the substance is reacted with a molecule that can recognize the substance and is immobilized on a reaction field connected to the field effect transistor. The biosensor chip comprises the field effect transistor and a mounting substrate on which the field effect transistor is mounted.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: April 29, 2014
    Assignee: Mitsumi Electric, Co., Ltd.
    Inventors: Mitsuru Sakamoto, Hirohiko Urushiyama, Hiroaki Kikuchi, Tomoaki Yamabayashi
  • Patent number: 8698210
    Abstract: Provided is a sensor having a high sensitivity and a high degree of freedom of layout by reducing constrictions of the channel shape, the reaction field area, and the position. Provided is also a method for manufacturing the sensor. The sensor (10) includes: a source electrode (15), a drain electrode, (14), and a gate electrode (13) arranged on silicon oxide film (12a, 12b); a channel (16) arranged on the silicon oxide films (12a, 12b) and electrically connected to the source electrode (15) and the drain electrode (14); and a reaction field (20) arranged on the silicon oxide films (12a, 12b). The reaction field (20) is formed at a position on the silicon oxide film (12a), the position being different from a position for the channel (16). With this configuration, it is possible to independently select the shape of the channel (16) and the area of the reaction field (20). This enables the sensor (10) to have a high measurement sensitivity and a high degree of freedom of layout.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: April 15, 2014
    Assignee: Mitsumi Electric, Co., Ltd.
    Inventors: Tomoaki Yamabayashi, Osamu Takahashi, Katsunori Kondo, Hiroaki Kikuchi
  • Publication number: 20140017146
    Abstract: Disclosed are: a biosensor kit in which a biosensor utilizing a field effect transistor is not deteriorated during storage or transport; and a system for detecting a substance of interest, which is equipped with the biosensor chip. The biosensor kit comprises a biosensor chip which can measure a substance of interest quantitatively and a package which can hermetically seal the biosensor chip and is composed of a packaging material comprising a metal film. The biosensor chip can measure the substance quantitatively based on the value of a current generated in a field effect transistor when the substance is reacted with a molecule that can recognize the substance and is immobilized on a reaction field connected to the field effect transistor. The biosensor chip comprises the field effect transistor and a mounting substrate on which the field effect transistor is mounted.
    Type: Application
    Filed: September 19, 2013
    Publication date: January 16, 2014
    Applicant: MITSUMI ELECTRIC CO., LTD.
    Inventors: Mitsuru SAKAMOTO, Hirohiko URUSHIYAMA, Hiroaki KIKUCHI, Tomoaki YAMABAYASHI
  • Patent number: 8487297
    Abstract: Disclosed is a carbon nanotube field effect transistor which stably exhibits excellent electrical conduction properties. Also disclosed are a method for manufacturing the carbon nanotube field effect transistor, and a biosensor comprising the carbon nanotube field effect transistor. First of all, an silicon oxide film is formed on a contact region of a silicon substrate by an LOCOS method. Next, an insulating film, which is thinner than the silicon oxide film on the contact region, is formed on a channel region of the silicon substrate. Then, after arranging a carbon nanotube, which forms a channel, on the silicon substrate, the carbon nanotube is covered with a protective film. Finally, a source electrode and a drain electrode are formed, and the source electrode and the drain electrode are electrically connected to the carbon nanotube, respectively.
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: July 16, 2013
    Assignees: Mitsumi Electric Co., Ltd., Arkray, inc.
    Inventors: Agus Subagyo, Motonori Nakamura, Tomoaki Yamabayashi, Osamu Takahashi, Hiroaki Kikuchi, Katsunori Kondo
  • Publication number: 20130028789
    Abstract: Disclosed are: a biosensor kit in which a bionsensor utilizing a field effect transistor is not deteriorated during storage or transport; and a system for detecting a substance of interest, which is equipped with the biosensor chip. The biosensor kit comprises a biosensor chip which can measure a substance of interest quantitatively and a package which can hermetically seal the biosensor chip and is composed of a packaging material comprising a metal film. The biosensor chip can measure the substance quantitatively based on the value of a current generated in a field effect transistor when the substance is reacted with a molecule that can recognize the substance and is immobilized on a reaction field connected to the field effect transistor. The biosensor chip comprises the field effect transistor and a mounting substrate on which the field effect transistor is mounted.
    Type: Application
    Filed: March 15, 2011
    Publication date: January 31, 2013
    Inventors: Mitsuru Sakamoto, Hirohiko Urushiyama, Hiroaki Kikuchi, Tomoaki Yamabayashi
  • Patent number: 8288804
    Abstract: Provided is a carbon nanotube field effect transistor manufacturing method wherein carbon nanotube field effect transistors having excellent stable electric conduction property are manufactured with excellent reproducibility. After arranging carbon nanotubes to be a channel on a substrate, the carbon nanotubes are covered with an insulating protection film. Then, a source electrode and a drain electrode are formed on the insulating protection film. At this time, a contact hole is formed on the protection film, and the carbon nanotubes are connected with the source electrode and the drain electrode. Then, a wiring protection film, a conductive film and a plasma CVD film are sequentially formed on the insulating protection film, the source electrode and the drain electrode. In the field effect transistor thus manufactured, since the carbon nanotubes to be the channel are not contaminated and not damaged, excellent stable electric conductive property is exhibited.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: October 16, 2012
    Assignee: Mitsumi Electric Co., Ltd.
    Inventors: Hiroaki Kikuchi, Osamu Takahashi, Katsunori Kondo, Tomoaki Yamabayashi, Kunio Ogasawara, Tadashi Ishigaki, Yutaka Hienuki, Motonori Nakamura, Agus Subagyo
  • Patent number: 8236639
    Abstract: A semiconductor device manufacturing method is a method of forming a semiconductor device that includes a cell part that includes plural transistor cells in each of which a gate of a trench type is formed in a semiconductor layer, and diffused layers are formed on both sides of the gate, and a guard ring part that surrounds the cell part. The semiconductor device manufacturing method includes forming an interlayer dielectric film on a surface of the semiconductor layer in which the gate and the diffused layers are formed; reducing a thickness of the interlayer dielectric film formed in the cell part through etch back; forming a contact part having a shape of a hole or a groove in the interlayer dielectric film at a position above the diffused layer; and forming a metal film on the interlayer dialectic film.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: August 7, 2012
    Assignee: Mitsumi Electric Co., Ltd.
    Inventors: Hiroaki Kikuchi, Katsunori Kondo, Shigeru Shinohara, Osamu Takahashi, Tomoaki Yamabayashi
  • Patent number: 8148213
    Abstract: A method for manufacturing a biosensor includes forming a laminate of a first silicon oxide film and a polysilicon film on one surface of a silicon substrate; forming a second silicon oxide film on the other surface of the silicon substrate; forming a source electrode, a drain electrode, and a channel on the first silicon oxide film, the channel connecting the source electrode and the drain electrode; and removing the polysilicon film.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: April 3, 2012
    Assignee: Mitsumi Electric Co., Ltd.
    Inventors: Hiroaki Kikuchi, Tomoaki Yamabayashi, Osamu Takahashi
  • Publication number: 20110291075
    Abstract: Disclosed is a carbon nanotube field effect transistor which stably exhibits excellent electrical conduction properties. Also disclosed are a method for manufacturing the carbon nanotube field effect transistor, and a biosensor comprising the carbon nanotube field effect transistor. First of all, an silicon oxide film is formed on a contact region of a silicon substrate by an LOCOS method. Next, an insulating film, which is thinner than the silicon oxide film on the contact region, is formed on a channel region of the silicon substrate. Then, after arranging a carbon nanotube, which forms a channel, on the silicon substrate, the carbon nanotube is covered with a protective film. Finally, a source electrode and a drain electrode are formed, and the source electrode and the drain electrode are electrically connected to the carbon nanotube, respectively.
    Type: Application
    Filed: December 25, 2009
    Publication date: December 1, 2011
    Inventors: Agus Subagyo, Motonori Nakamura, Tomoaki Yamabayashi, Osamu Takahashi, Hiroaki Kikuchi, Katsunori Kondo
  • Publication number: 20110248698
    Abstract: A biosensor includes at least two field effect transistor devices, each including a silicon substrate, a silicon oxide film formed on a surface of the silicon substrate, a source electrode disposed on the silicon oxide film, a drain electrode disposed on the silicon oxide film, a channel for connecting the source electrode and the drain electrode, and a gate electrode capable of controlling the channel, wherein one of the at least two field effect transistor devices is provided with a reaction field on which a target recognition molecule is to be immobilized, and the other one of the at least two field effect transistor devices is provided with a reaction field on which a target recognition molecule is not to be immobilized.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 13, 2011
    Inventors: Hiroaki Kikuchi, Tomoaki Yamabayashi, Osamu Takahashi
  • Publication number: 20110244638
    Abstract: A semiconductor device manufacturing method is a method of forming a semiconductor device that includes a cell part that includes plural transistor cells in each of which a gate of a trench type is formed in a semiconductor layer, and diffused layers are formed on both sides of the gate, and a guard ring part that surrounds the cell part. The semiconductor device manufacturing method includes forming an interlayer dielectric film on a surface of the semiconductor layer in which the gate and the diffused layers are formed; reducing a thickness of the interlayer dielectric film formed in the cell part through etch back; forming a contact part having a shape of a hole or a groove in the interlayer dielectric film at a position above the diffused layer; and forming a metal film on the interlayer dialectic film.
    Type: Application
    Filed: March 24, 2011
    Publication date: October 6, 2011
    Applicant: MITSUMI ELECTRIC CO., LTD.
    Inventors: Hiroaki KIKUCHI, Katsunori KONDO, Shigeru SHINOHARA, Osamu TAKAHASHI, Tomoaki YAMABAYASHI
  • Publication number: 20110212562
    Abstract: A method for manufacturing a biosensor includes forming a laminate of a first silicon oxide film and a polysilicon film on one surface of a silicon substrate; forming a second silicon oxide film on the other surface of the silicon substrate; forming a source electrode, a drain electrode, and a channel on the first silicon oxide film, the channel connecting the source electrode and the drain electrode; and removing the polysilicon film.
    Type: Application
    Filed: February 16, 2011
    Publication date: September 1, 2011
    Applicant: MITSUMI ELECTRIC CO., LTD.
    Inventors: Hiroaki KIKUCHI, Tomoaki YAMABAYASHI, Osamu TAKAHASHI
  • Publication number: 20110062419
    Abstract: Provided is a carbon nanotube field effect transistor manufacturing method wherein carbon nanotube field effect transistors having excellent stable electric conduction property are manufactured with excellent reproducibility. After arranging carbon nanotubes to be a channel on a substrate, the carbon nanotubes are covered with an insulating protection film. Then, a source electrode and a drain electrode are formed on the insulating protection film. At this time, a contact hole is formed on the protection film, and the carbon nanotubes are connected with the source electrode and the drain electrode. Then, a wiring protection film, a conductive film and a plasma CVD film are sequentially formed on the insulating protection film, the source electrode and the drain electrode. In the field effect transistor thus manufactured, since the carbon nanotubes to be the channel are not contaminated and not damaged, excellent stable electric conductive property is exhibited.
    Type: Application
    Filed: May 22, 2009
    Publication date: March 17, 2011
    Inventors: Hiroaki Kikuchi, Osamu Takahashi, Katsunori Kondo, Tomoaki Yamabayashi, Kunio Ogasawara, Tadashi Ishigaki, Yutaka Hienuki, Motonori Nakamura, Agus Subagyo
  • Publication number: 20110042673
    Abstract: Provided is a sensor having a high sensitivity and a high degree of freedom of layout by reducing constrictions of the channel shape, the reaction field area, and the position. Provided is also a method for manufacturing the sensor. The sensor (10) includes: a source electrode (15), a drain electrode, (14), and a gate electrode (13) arranged on silicon oxide film (12a, 12b); a channel (16) arranged on the silicon oxide films (12a, 12b) and electrically connected to the source electrode (15) and the drain electrode (14); and a reaction field (20) arranged on the silicon oxide films (12a, 12b). The reaction field (20) is formed at a position on the silicon oxide film (12a), the position being different from a position for the channel (16). With this configuration, it is possible to independently select the shape of the channel (16) and the area of the reaction field (20). This enables the sensor (10) to have a high measurement sensitivity and a high degree of freedom of layout.
    Type: Application
    Filed: May 13, 2009
    Publication date: February 24, 2011
    Inventors: Tomoaki Yamabayashi, Osamu Takahashi, Katsunori Kondo, Hiroaki Kikuchi