Patents by Inventor Tomohiko Matsuura

Tomohiko Matsuura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020054713
    Abstract: An object of this invention is to efficiently attain noise removal. In order to achieve the object, the discrete wavelet transforms of an input image are computed to output wavelet coefficients of respective subbands (S301). Appropriate threshold values are respectively set for subbands HL, LH, and HH indicating high-frequency components (S302a, S302b, S302c). The wavelet coefficients of the subbands HL, LH, and HH then undergo threshold value processes using the set threshold values for the respective subbands (S303a, S303b, S303c). Pixels to be processed in a coefficient conversion process are determined based on the threshold value processing results of the respective subbands (S304). The wavelet coefficients of the respective subbands corresponding to the pixels to be processed determined in step S304 undergo coefficient conversion (S305), and the converted transformation coefficients undergo inverse discrete wavelet transformation, thus reconstructing and outputting a noise-removed image (S306).
    Type: Application
    Filed: November 8, 2001
    Publication date: May 9, 2002
    Inventor: Tomohiko Matsuura
  • Publication number: 20020031247
    Abstract: In order to eliminate noise from an X-ray image by obtaining transform coefficients of a wavelet transform based upon information contained in tile-by-tile image data and obtaining image data based upon these transform coefficients, the entirety of a pre-processed original image is segmented into a plurality of tiles (S301). Wavelet transform coefficients of each tile obtained by segmentation are output (S302). Each tile is subjected to texture analysis and the results of analysis are output (S303). Next, a coefficient conversion is applied to the wavelet transform coefficients of each tile based upon the results of analysis (S304). High-frequency components among the transform coefficients are subjected to coefficient conversion. Next, an inverse discrete wavelet transform is applied to the wavelet transform coefficients of each area that has undergone conversion, whereby an image from which noise has been eliminated is output (S306).
    Type: Application
    Filed: September 10, 2001
    Publication date: March 14, 2002
    Inventors: Tomohiko Matsuura, Hiroyuki Shinbata, Makoto Sato
  • Publication number: 20020003905
    Abstract: Obtains an image from which noise is removed upon compressing or decoding and displaying an image containing noise. To accomplish this, a subband to which a wavelet transform coefficient of interest belongs is checked upon entropy decoding, and when the coefficient belongs to a subband other than LL, decoding is aborted at a predetermined lower-limit bit plane, and all bits contained in bit planes from the lower-limit bit plane to the least significant bit plane are set at zero.
    Type: Application
    Filed: April 17, 2001
    Publication date: January 10, 2002
    Inventors: Makoto Sato, Tomohiko Matsuura, Hiroyuki Shinbata
  • Publication number: 20010043732
    Abstract: It is an object to enable an irradiation field to be accurately extracted. An irradiation field extracting method of extracting an irradiation field from a radiation image is constructed by a step of extracting characteristic points in the radiation image by using geometric patterns for detecting an irradiation field edge and a step of detecting an edge portion of the irradiation field on the basis of the characteristic points.
    Type: Application
    Filed: April 12, 2001
    Publication date: November 22, 2001
    Inventor: Tomohiko Matsuura