Patents by Inventor Tomohiro Arase

Tomohiro Arase has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7332070
    Abstract: A specific nonionic surfactant is added to a component mainly comprising hydrocarbons before passing through a heat exchanger in a petrochemical plant or a polyolefin production plant, whereby fouling of the heat exchanger can be efficiently prevented, that is, the performance of the heat exchanger can be prevented from being deteriorated, and long-term operation is feasible without sacrificing the speed of production. The nonionic surfactant is preferably a polyoxyalkylene compound represented by the general formula [I] below, more preferably a compound represented by the general formula [II] below. R1—O—[CH2—CH(R3)—O]k—R2[I] wherein R1, R2 and R3 are selected from a hydrogen atom, a C1 to C20 alkyl group, a C6 to C20 aryl group and a C1 to C20 acyl group, and may be the same or different from each other. HO—(CH2CH2O)m—[CH2CH(CH3)O]n—(CH2CH2O)pH[II] wherein m, n and p each represent the average number of repeating units, and m is in the range of 1 to 20, n is 2 to 50 and p is 1 to 20.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: February 19, 2008
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Hiroto Nishida, Kouji Kishinami, Tomohiro Arase
  • Publication number: 20060241252
    Abstract: A specific nonionic surfactant is added to a component mainly comprising hydrocarbons before passing through a heat exchanger in a petrochemical plant or a polyolefin production plant, whereby fouling of the heat exchanger can be efficiently prevented, that is, the performance of the heat exchanger can be prevented from being deteriorated, and long-term operation is feasible without sacrificing the speed of production. The nonionic surfactant is preferably a polyoxyalkylene compound represented by the general formula [I] below, more preferably a compound represented by the general formula [II] below. R1—O—[CH2—CH(R3)—O]k—R2??[I] wherein R1, R2 and R3 are selected from a hydrogen atom, a C1 to C20 alkyl group, a C6 to C20 aryl group and a C1 to C20 acyl group, and may be the same or different from each other. HO—(CH2CH2O)m-[CH2CH(CH3)O]n—(CH2CH2O)pH??[II] wherein m, n and p each represent the average number of repeating units, and m is in the range of 1 to 20, n is 2 to 50 and p is 1 to 20.
    Type: Application
    Filed: July 15, 2004
    Publication date: October 26, 2006
    Inventors: Hiroto Nishida, Kouji Kishinami, Tomohiro Arase
  • Patent number: 6897268
    Abstract: In a gas phase olefin polymerization process using a fluidized bed vessel, an apparatus is employed having a device for measuring temperature or temperature distribution on the external wall surface of the vessel and a controlling means which predicts the progressive state of reaction inside the vessel, calculates the difference between the measured value and a target value determined beforehand and modifies polymerization conditions in relation thereto.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: May 24, 2005
    Assignee: Mitsui Chemical, Inc.
    Inventors: Ryouichi Yamamoto, Satoru Ohtani, Tomohiro Arase, Fumio Hattori, Yoshiaki Kikuchi, Hisayoshi Watanabe, Jun Iwama
  • Patent number: 6891002
    Abstract: A process for producing a polyolefin according to the present invention comprises (co) polymerizing one or two or more ?-olefins in a vapor phase in a fluidized-bed reactor, wherein the concentration of (A) a saturated aliphatic hydrocarbon in the fluidized bed reactor is 1 mol % or more and at least one compound selected from (B) an aliphatic amide and (C) a nonionic surfactant constituted only of carbon, oxygen and hydrogen atoms is made to exist in the reactor. The present invention can provide a process for producing a polyolefin, the process ensuring that the prevention of clogging caused by the generation of sheet or block polymers and a high efficiency of the production of a polyolefin due to good catalytic activity can be accomplished at the same time and also having superb continuous productivity.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: May 10, 2005
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Shinji Abe, Shotaro Matsuda, Satoru Ohtani, Hiroto Nishida, Michiharu Sakata, Tomohiro Arase
  • Publication number: 20030181605
    Abstract: A process for producing a polyolefin according to the present invention comprises (co) polymerizing one or two or more &agr;-olefins in a vapor phase in a fluidized-bed reactor, wherein the concentration of (A) a saturated aliphatic hydrocarbon in the fluidized bed reactor is 1 mol % or more and at least one compound selected from (B) an aliphatic amide and (C) a nonionic surfactant constituted only of carbon, oxygen and hydrogen atoms is made to exist in the reactor. The present invention can provide a process for producing a polyolefin, the process ensuring that the prevention of clogging caused by the generation of sheet or block polymers and a high efficiency of the production of a polyolefin due to good catalytic activity can be accomplished at the same time and also having superb continuous productivity.
    Type: Application
    Filed: March 25, 2003
    Publication date: September 25, 2003
    Inventors: Shinji Abe, Shotaro Matsuda, Satoru Ohtani, Hiroto Nishida, Michiharu Sakata, Tomohiro Arase
  • Publication number: 20030027949
    Abstract: In a gas phase olefin polymerization process using a fluidized bed vessel, an apparatus is employed having a device for measuring temperature or temperature distribution on the external wall surface of the vessel and a controlling means which predicts the progressive state of reaction inside the vessel, calculates the difference between the measured value and a target value determined beforehand and modifies polymerization conditions in relation thereto.
    Type: Application
    Filed: September 24, 2002
    Publication date: February 6, 2003
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Ryouichi Yamamoto, Satoru Ohtani, Tomohiro Arase, Fumio Hattori, Yoshiaki Kikuchi, Hisayoshi Watanabe, Jun Iwama
  • Patent number: 6472484
    Abstract: The present invention provides a method for producing a polyolefin composition having a narrow composition distribution and is characterized in that when at least two olefins are copolymerized in the presence of a transition metal compound catalyst using at least two gas phase fluidized bed reactors, a saturated aliphatic hydrocarbon is allowed to exist in each reactor in a concentration from 0.1 to 30 mol %, and the ratio of the concentration (C2) of a saturated aliphatic hydrocarbon in a reactor of a second stage to the concentration (C1) of a saturated aliphatic hydrocarbon in a reactor of a first stage (C2/C1) is 0.13 or more.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: October 29, 2002
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Shinji Abe, Tomohiro Arase, Satoru Ohtani, Shotaro Matsuda
  • Patent number: 6461573
    Abstract: In a gas phase olefin polymerization process using a fluidized bed vessel, an apparatus is employed having a device for measuring temperature or temperature distribution on the external wall surface of the vessel and a controlling means which predicts the progressive state of reaction inside the vessel, calculates the difference between the measured value and a target value determined beforehand an modifies polymerization conditions.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: October 8, 2002
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Ryouichi Yamamoto, Satoru Ohtani, Tomohiro Arase, Fumio Hattori, Yoshiaki Kikuchi, Hisayoshi Watanabe, Jun Iwama
  • Patent number: 6013741
    Abstract: A method of terminating a gas phase polymerization of an olefin to be conducted subsequent to producing a polyolefin by feeding a gaseous olefin into a fluidized bed reactor to polymerize the gaseous olefin while holding solid particles containing a catalyst in a fluid state, said method comprising introducing a deactivator in the fluidized bed reactor through at least two deactivator introduction ports of the fluidized bed reactor so as to terminate the gas phase polymerization. The height of the fluidized bed is generally at least 3 m. The deactivator is preferably introduced through deactivator introduction ports disposed at heights Ha=-0.3 D to 0.3 D (a) and Hb=0.3 D to 2.0 D (b) (D is the inside diameter of the fluidized bed reactor (cm)). After the termination of the polymerization, the gas phase polymerization can directly be resumed.
    Type: Grant
    Filed: September 11, 1997
    Date of Patent: January 11, 2000
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Satoru Ohtani, Kenji Doi, Tomohiro Arase, Ryouichi Yamamoto
  • Patent number: 5738249
    Abstract: A rotor 22 accommodated in a casing 26 has a circumferential surface sliding on the internal surface of the casing 26 in airtight condition. The casing 26 is provided with a powder feed part 27 positioned above the rotor and is provided with a powder drop part 30 positioned under the rotor. At least one quantity-measuring recessed part is formed in the slide surface of the rotor. In accordance with the rotation of the rotor, the quantity-measuring recessed part comes to communicate with the powder feed part, so that powder is fed from the powder feed part into the quantity-measuring recessed part. When the rotation is advanced, the quantity-measuring recessed part comes to communicate with the powder drop part, so that the powder drops from the quantity-measuring recessed part through the powder drop part into a high-pressure part 19 arranged thereunder.
    Type: Grant
    Filed: August 8, 1996
    Date of Patent: April 14, 1998
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Yoshiaki Kikuchi, Tomohiro Arase, Shotaro Matsuda, Ryoichi Yamamoto
  • Patent number: 5442121
    Abstract: A process for producing N,N-disubstituted aminophenol which comprises the steps of:obtaining a reaction mixture containing N-substituted aminophenol by reacting a dihydric phenol and an amine;subjecting said reaction mixture to heat treatment so as to thermally decompose quaternary ammonia salt contained in said reaction mixture into a dihydric phenol and an amine, and removing at least said amine by distillation;separating high-boiling impurities by distillation to separate N-substituted aminophenol; andsubjecting said separated N-substituted aminophenol to reduction alkylation using an aldehyde compound.According to the present invention, high-purity N,N-disubstituted aminophenol can be obtained in a high yield at high selectivity, and a reduction catalyst can be used repeatedly because its activity can be maintained at a high level and yet it can retain high activity for a long period of time.
    Type: Grant
    Filed: November 15, 1994
    Date of Patent: August 15, 1995
    Assignee: Mitsui Petrochemical Industries Ltd.
    Inventors: Shigeki Nagamatsu, Tomohiro Arase, Masaaki Yasuda