Patents by Inventor Tomohiro Kaburagi

Tomohiro Kaburagi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11837691
    Abstract: A battery manufacturing method includes forming a unit cell having a positive electrode that is obtained by a positive electrode active material layer containing an electrolytic solution being disposed on a positive electrode current collector, a negative electrode that is obtained by a negative electrode active material layer containing an electrolytic solution being disposed on a negative electrode current collector, and a separator interposed between the positive electrode and the negative electrode. The battery manufacturing method further includes applying pressure to one unit cell or with two or more stacked unit cells from the stacking direction, and charging the one unit cell or the two or more stacked unit cells after applying of the pressure. The method is performed such that the positive electrode and the negative electrode are formed without an application film being subjected to a drying process performed through heating.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: December 5, 2023
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tomohiro Kaburagi, Kazuyuki Yoda, Eiji Minegishi, Noboru Yamauchi, Yusuke Emori, Hideki Ishitani, Masanori Shimada
  • Patent number: 11658343
    Abstract: A battery manufacturing method includes forming a unit cell having a positive electrode that is obtained by a positive electrode active material layer containing an electrolytic solution being disposed on a positive electrode current collector, a negative electrode that is obtained by a negative electrode active material layer containing an electrolytic solution being disposed on a negative electrode current collector, and a separator interposed between the positive and negative electrodes. Heat sealing a seal part that is disposed at an outer peripheral portion of the unit cell. Cooling the outer peripheral portion of the unit cell by using a cooling medium after carrying out the heat sealing of the seal part. The method is performed such that the positive electrode and the negative electrode are formed without an application film being subjected to a drying process performed through heating.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: May 23, 2023
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazuyuki Yoda, Tomohiro Kaburagi, Eiji Minegishi, Koh Hatanaka, Takuya Sakurai, Masanori Shimada, Yusuke Emori, Yuichiro Yokoyama
  • Patent number: 11652241
    Abstract: A method for manufacturing a battery has a stacking step in which a plurality of unit cells are stacked, the unit cells being such that a positive electrode obtained by a positive electrode active material layer containing an electrolytic solution disposed on a positive electrode current collector, and a negative electrode obtained by a negative electrode active material layer containing an electrolytic solution disposed on a negative electrode current collector with a separator interposed therebetween. In the stacking step, each time one of the unit cells is stacked, the stack of the unit cells are pressed from the stacking direction.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: May 16, 2023
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tomohiro Kaburagi, Hajime Satou, Kazuyuki Yoda, Shigeo Watanabe, Yusuke Mizuno, Yusuke Emori, Takuya Sakurai
  • Patent number: 11456447
    Abstract: A predoping method for a negative electrode active material to dope the negative electrode active material with lithium ions. The predoping method for a negative electrode active material includes: a predoping process and a post-doping modification process. In the predoping process, the negative electrode active material is doped with lithium ions, to thereby reduce a potential of the negative electrode active material relative to lithium metal. In the post-doping modification process, after the predoping process, reaction is caused between a reactive compound that is reactive with lithium ions and lithium ions doped into the negative electrode active material, to thereby increase the potential of the negative electrode active material relative to lithium metal. The potential of the negative electrode active material relative to lithium metal is 0.8 V or more at completion of the post-doping modification process.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: September 27, 2022
    Assignees: NISSAN MOTOR CO., LTD., JSR Corporation
    Inventors: Shotaro Doi, Yuki Kusachi, Noboru Yamauchi, Tomohiro Kaburagi, Hideaki Horie, Yusuke Nakashima, Kazuya Tsuchida, Naofumi Shoji, Koji Sumiya, Shigehito Asano, Yasuyuki Koga, Nobuo Ando, Terukazu Kokubo
  • Publication number: 20220123274
    Abstract: A method of manufacturing a battery electrode includes a powder supply step, a vibration step, a sorting step, a moving step, and a deposition step, in the powder supply step, a powder 60 composed of granulated particles is supplied, in the vibration step, vibration is applied to the powder, in the sorting step, the powder is caused to pass through at least one opening H1, H2 to adjust a particle diameter of the granulated particles to a particle diameter that allows passing through the opening, in the moving step, the powder that has passed through the opening is moved from an outlet position P1 of the opening to a supply position P2 where the powder is supplied to the surface of a current collector 31, and in the deposition step, the powder is deposited on the surface of the current collector.
    Type: Application
    Filed: January 29, 2020
    Publication date: April 21, 2022
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kazuyuki YODA, Tomohiro KABURAGI, Hiroshi KUBOTA, Shinichi AKAISHI, Hideaki HORIE, Yuki KUSACHI, Yuichiro YOKOYAMA
  • Publication number: 20210111389
    Abstract: A predoping method for a negative electrode active material to dope the negative electrode active material with lithium ions using an electrolyte solution that includes lithium ions. The electrolyte solution includes at least one type of additive having a reduction potential higher than a reduction potential of a solvent contained in the electrolyte solution.
    Type: Application
    Filed: February 21, 2019
    Publication date: April 15, 2021
    Applicants: NISSAN MOTOR CO., LTD., JSR Corporation
    Inventors: Shotaro DOI, Yuki KUSACHI, Noboru YAMAUCHI, Tomohiro KABURAGI, Hideaki HORIE, Yusuke NAKASHIMA, Kazuya TSUCHIDA, Naofumi SHOJI, Koji SUMIYA, Shigehito ASANO, Yasuyuki KOGA, Nobuo ANDO, Terukazu KOKUBO
  • Publication number: 20210028496
    Abstract: A method for manufacturing a battery has a stacking step in which a plurality of unit cells are stacked, the unit cells being such that a positive electrode obtained by a positive electrode active material layer containing an electrolytic solution disposed on a positive electrode current collector, and a negative electrode obtained by a negative electrode active material layer containing an electrolytic solution disposed on a negative electrode current collector with a separator interposed therebetween. In the stacking step, each time one of the unit cells is stacked, the stack of the unit cells are pressed from the stacking direction.
    Type: Application
    Filed: March 26, 2019
    Publication date: January 28, 2021
    Inventors: Tomohiro KABURAGI, Hajime SATOU, Kazuyuki YODA, Shigeo WATANABE, Yusuke MIZUNO, Yusuke EMORI, Takuya SAKURAI
  • Publication number: 20210013539
    Abstract: A battery manufacturing method includes forming a unit cell having a positive electrode that is obtained by a positive electrode active material layer containing an electrolytic solution being disposed on a positive electrode current collector, a negative electrode that is obtained by a negative electrode active material layer containing an electrolytic solution being disposed on a negative electrode current collector, and a separator interposed between the positive electrode and the negative electrode. The battery manufacturing method further includes applying pressure to one unit cell or with two or more stacked unit cells from the stacking direction, and charging the one unit cell or the two or more stacked unit cells after applying of the pressure. The method is performed such that the positive electrode and the negative electrode are formed without an application film being subjected to a drying process performed through heating.
    Type: Application
    Filed: March 20, 2019
    Publication date: January 14, 2021
    Inventors: Tomohiro KABURAGI, Kazuyuki YODA, Eiji MINEGISHI, Noboru YAMAUCHI, Yusuke EMORI, Hideki ISHITANI, Masanori SHIMADA
  • Publication number: 20210005934
    Abstract: A battery manufacturing method includes forming a unit cell having a positive electrode that is obtained by a positive electrode active material layer containing an electrolytic solution being disposed on a positive electrode current collector, a negative electrode that is obtained by a negative electrode active material layer containing an electrolytic solution being disposed on a negative electrode current collector, and a separator interposed between the positive and negative electrodes. Heat sealing a seal part that is disposed at an outer peripheral portion of the unit cell. Cooling the outer peripheral portion of the unit cell by using a cooling medium after carrying out the heat sealing of the seal part. The method is performed such that the positive electrode and the negative electrode are formed without an application film being subjected to a drying process performed through heating.
    Type: Application
    Filed: March 20, 2019
    Publication date: January 7, 2021
    Inventors: Kazuyuki YODA, Tomohiro KABURAGI, Eiji MINEGISHI, Koh HATANAKA, Takuya SAKURAI, Masanori SHIMADA, Yusuke EMORI, Yuichiro YOKOYAMA
  • Publication number: 20200395594
    Abstract: A predoping method for a negative electrode active material to dope the negative electrode active material with lithium ions. The predoping method for a negative electrode active material includes: a predoping process and a post-doping modification process. In the predoping process, the negative electrode active material is doped with lithium ions, to thereby reduce a potential of the negative electrode active material relative to lithium metal. In the post-doping modification process, after the predoping process, reaction is caused between a reactive compound that is reactive with lithium ions and lithium ions doped into the negative electrode active material, to thereby increase the potential of the negative electrode active material relative to lithium metal. The potential of the negative electrode active material relative to lithium metal is 0.8 V or more at completion of the post-doping modification process.
    Type: Application
    Filed: February 21, 2019
    Publication date: December 17, 2020
    Applicants: NISSAN MOTOR CO., LTD., JSR Corporation
    Inventors: Shotaro DOI, Yuki KUSACHI, Noboru YAMAUCHI, Tomohiro KABURAGI, Hideaki HORIE, Yusuke NAKASHIMA, Kazuya TSUCHIDA, Naofumi SHOJI, Koji SUMIYA, Shigehito ASANO, Yasuyuki KOGA, Nobuo ANDO, Terukazu KOKUBO
  • Publication number: 20200274125
    Abstract: The present invention provides a separator for lithium ion battery capable of achieving both excellent handling properties and suppression of thermal deformation without changing the thickness of the separator. The present invention is a separator for a lithium ion battery, the separator being disposed between a flat-plate-like positive electrode collector and a flat-plate-like negative electrode collector. The separator for a lithium ion battery is characterized by comprising: a sheet-like separator body a polyolefin porous membrane; and a frame-like member that is arranged annularly along the outer periphery of the separator body, wherein the frame-like member a heat-resistant annular support member and a seal layer that is disposed on the surface of the heat-resistant annular support member and is capable of thermocompression bonding with the positive electrode collector or the negative electrode collector.
    Type: Application
    Filed: August 31, 2018
    Publication date: August 27, 2020
    Applicant: NISSAN MOTOR CO., LTD
    Inventors: Masatoshi OKURA, Masanori KOIKE, Tomohiro KABURAGI, Kazuyuki YODA, Yuki KUSACHI, Yasuhiko OHSAWA, Eiji MINEGISHI
  • Patent number: 10516161
    Abstract: A negative electrode active material includes a silicon-containing alloy represented by: SixSnyMzAa (A is unavoidable impurities, M is one or more transition metal elements, x, y, z, and a represent values of percent by mass, and 0<x<100, 0<y<100, 0<z<100, and 0?a<0.5 and x+y+z+a=100). The silicon-containing alloy has a lattice image subjected to Fourier transform processing to obtain a diffraction pattern. A distance between Si regular tetrahedrons is 0.39 nm or more when the distance between Si regular tetrahedrons in an amorphous region calculated from a Fourier image obtained by subjecting a diffraction ring portion present in a width of from 0.7 to 1.0 when a distance between Si regular tetrahedrons is 1.0 in this diffraction pattern to inverse Fourier transform is 10 nm or less.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: December 24, 2019
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tomohiro Kaburagi, Manabu Watanabe, Nobutaka Chiba, Humihiro Miki, Makoto Tanimura
  • Patent number: 10505184
    Abstract: A negative electrode active material for electric device is used which includes a silicon-containing alloy having a structure in which a silicide phase containing a silicide of a transition metal is dispersed in a parent phase containing amorphous or low crystalline silicon as a main component and a predetermined composition and in which a ratio value (B/A) of a diffraction peak intensity B of a silicide of a transition metal in a range of 2?=37 to 45° to a diffraction peak intensity A of a (111) plane of Si in a range of 2?=24 to 33° is 0.41 or more in an X-ray diffraction measurement of the silicon-containing alloy using a CuK?1 ray.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: December 10, 2019
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Humihiro Miki, Tomohiro Kaburagi, Manabu Watanabe, Nobutaka Chiba
  • Patent number: 10403890
    Abstract: A negative electrode active material which has a ternary alloy composition represented by Si—Sn-M (M is one or two or more transition metal elements) and has a microstructure which has a first phase (silicide phase) having a silicide of a transition metal as a main component and a second phase partially containing Sn and having amorphous or low crystalline silicon as a main component, and further has partially a plurality of independent first phases and partially a eutectic structure of the first phase and the second phase is used for an electric device. The negative electrode active material improves cycle durability of an electric device such as a lithium ion secondary battery.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: September 3, 2019
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Nobutaka Chiba, Youichi Yoshioka, Tomohiro Kaburagi, Manabu Watanabe, Masaya Arai
  • Patent number: 10340519
    Abstract: To provide a means capable of improving the cycle durability of an electric device such as a lithium ion secondary battery. A negative electrode active material containing a silicon-containing alloy having ternary alloy composition represented by Si—Sn-M (M is one or two or more transition metal elements) or quaternary alloy composition represented by Si—Sn-M-Al (M is one or two or more transition metal elements) and having a structure wherein an a-Si phase containing amorphous or low crystalline silicon containing tin in a silicon crystal structure in form of a solid solution is dispersed in a silicide phase containing a silicide of a transition metal as a main component is used in an electric device. The negative electrode active material improves the cycle durability of an electric device such as a lithium ion secondary battery.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: July 2, 2019
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Nobutaka Chiba, Tomohiro Kaburagi, Youichi Yoshioka, Manabu Watanabe, Masaya Arai
  • Patent number: 10297360
    Abstract: A negative electrode active material includes a silicon-containing alloy having a composition represented by: SixSnyMzAa (A is unavoidable impurities, M is one or more transition metal elements, x, y, z, and a represent values of percent by mass, and 0<x<100, 0<y<100, 0<z<100, and 0?a<0.5 and x+y+z+a=100). The silicon-containing alloy has a lattice image subjected to Fourier transform processing to obtain a diffraction pattern and a size determined as an average value of maximum five major axis diameters of regions having a periodic array from a Fourier image obtained by subjecting a diffraction ring portion present in a width of from 0.7 to 1.0 when a distance between Si regular tetrahedrons is 1.0 in this diffraction pattern to inverse Fourier transform is 10 nm or less.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: May 21, 2019
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tomohiro Kaburagi, Manabu Watanabe, Nobutaka Chiba, Humihiro Miki, Makoto Tanimura
  • Patent number: 10276866
    Abstract: In an electric device the negative electrode active material layer includes a silicide phase containing a silicide of a transition metal is dispersed in a parent phase containing amorphous or low crystalline silicon as a main component, a predetermined composition, and a ratio value (B/A) of a diffraction peak intensity B of a silicide of a transition metal in a range of 2?=37 to 45° to a diffraction peak intensity A of a (111) plane of Si in a range of 2?=24 to 33° in a predetermined range in an X-ray diffraction measurement using a CuK?1 ray is used as a Si-containing alloy. A solid solution or an oxide-coated solid solution in which a coating layer containing an oxide in a predetermined amount is formed on the particle surface of the solid solution and is used in the positive electrode active material layer.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: April 30, 2019
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Manabu Watanabe, Tomohiro Kaburagi, Youichi Yoshioka, Hirokazu Komatsu, Nobutaka Chiba, Shinji Yamamoto
  • Publication number: 20180366725
    Abstract: To provide a means capable of improving the cycle durability of an electric device such as a lithium ion secondary battery. A negative electrode active material containing a silicon-containing alloy having ternary alloy composition represented by Si—Sn-M (M is one or two or more transition metal elements) or quaternary alloy composition represented by Si—Sn-M-Al (M is one or two or more transition metal elements) and having a structure wherein an a-Si phase containing amorphous or low crystalline silicon containing tin in a silicon crystal structure in form of a solid solution is dispersed in a silicide phase containing a silicide of a transition metal as a main component is used in an electric device. The negative electrode active material improves the cycle durability of an electric device such as a lithium ion secondary battery.
    Type: Application
    Filed: November 10, 2016
    Publication date: December 20, 2018
    Inventors: Nobutaka Chiba, Tomohiro Kaburagi, Youichi Yoshioka, Manabu Watanabe, Masaya Arai
  • Publication number: 20180351170
    Abstract: A negative electrode active material which has a ternary alloy composition represented by Si—Sn-M (M is one or two or more transition metal elements) and has a microstructure which has a first phase (silicide phase) having a silicide of a transition metal as a main component and a second phase partially containing Sn and having amorphous or low crystalline silicon as a main component, and further has partially a plurality of independent first phases and partially a eutectic structure of the first phase and the second phase is used for an electric device. The negative electrode active material improves cycle durability of an electric device such as a lithium ion secondary battery.
    Type: Application
    Filed: November 10, 2015
    Publication date: December 6, 2018
    Inventors: Nobutaka Chiba, Youichi Yoshioka, Tomohiro Kaburagi, Manabu Watanabe, Masaya Arai
  • Publication number: 20180131002
    Abstract: A negative electrode active material includes a silicon-containing alloy represented by: SixSnyMzAa (A is unavoidable impurities, M is one or more transition metal elements, x, y, z, and a represent values of percent by mass, and 0<x<100, 0<y<100, 0<z<100, and 0?a<0.5 and x+y+z+a=100). The silicon-containing alloy has a lattice image subjected to Fourier transform processing to obtain a diffraction pattern. A distance between Si regular tetrahedrons is 0.39 nm or more when the distance between Si regular tetrahedrons in an amorphous region calculated from a Fourier image obtained by subjecting a diffraction ring portion present in a width of from 0.7 to 1.0 when a distance between Si regular tetrahedrons is 1.0 in this diffraction pattern to inverse Fourier transform is 10 nm or less.
    Type: Application
    Filed: December 17, 2014
    Publication date: May 10, 2018
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Tomohiro Kaburagi, Manabu Watanabe, Nobutaka Chiba, Humihiro Miki, Makoto Tanimura